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PREFACE
The fourteenth annual meeting of PME is the first to be held in a
Latin-American country: Mexico. The diverse traditions of Mexican
Culture provide a stimulating backdrop against which to continue
conversations started in previous years. Conference participants
can join these conversations in a number of different ways:
research reports, poster presentations, discussion groups and
working groups.

Two innovations made this year both reflect the view that PME
serves primarily as a forum for researchers in mathematics educa-
tion. First, there will be a discussion group that has as its
focus the aims of PME. Clearly, tensions about aims and goals are
to be expected in an international organization such as PME given
the geographical, cultural and philosophical diversity of its
members. One of PME's strengths is the common, democratic belief
that such tensions should be the subject of debate and argumenta-
tion.

A second innovation concerns the inclusion of a plenary symposium
in the program. In taking as their theme the responsibilities of
researchers in mathematics education, the symposium participants
will attempt to spark discussion of broader issues in mathematics
education from a variety of perspectives. The program committee is
grateful to Kath Hart for organizing the discussion group and to
Alan Bishop for organizing the plenary symposium.

The major interest of PME members as indicated by the research
reports continues to be the cognitive analysis of students"
mathematical conceptions and learning. A glance at the contents
pages of these proceedings reveals that these contributions
address a wide variety of different conceptual domains and age
levels. These do, however, appear to be some underrespresented
areas of investigation, particularly measurement and statistical
reasoning.

In addition to this cognitive emphasis, trends noted by organizers
of PME 13 continue to develop. One concerns the effective and
metacognitive aspects of students' mathematical experiences and
their relationship to their cognitive development. A second
concerns the conditions in which cognitive development occurs,
with particular emphasis on the social setting as well as on the
problems that students attempt to solve. A third concerns the
growing attention being paid to students' mathematical activity in
computer environments. More than in previous years, contributors
to this area of research are developing theoretically grounded
rationales for their construction of the environments. In
addition, there appears to be a growing realization that the
problem of accounting for students' learning while interacting
with the computer is empirical in nature and requires careful,
detailed analysis. The final trend concerns the growing interest
in didactical issues and in teachers' pedagogical activity in the
classroom. This line of work offers the possibility of developing
theoretical frameworks and methodologies that acknowledge the
mutual interdependence of teachers' and students' activities.
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HISTORY AND AIMS OF THE PME GROUP

At the Third International Congress on Mathematical Education ICME

3, Karlsruhe, 1976, Professor E. Fischbein of Tel Aviv University,

Israel, instituted a studying group bringing together people
working in the area of the psychology of mathematics education.

PME is affiliated with the International Commission for Mathemati-

cal Instruction ICMI.

The major goals of the group are:

1. To promote international contacts and the exchange of scienti-

fic information in the psychology of mathematics education;

2. To promote and stimulate interdisciplinary research in the
aforesaid area with the cooperation of psychologists,

mathematicians and mathematics teachers;

3. To further a deeper and better understanding of the

psychological aspects of teaching and learning mathematics and

the implications thereof.

Membership

1. Membership is open to persons involved in active research in

furtherance of the group's aims, or professionally interested

in the results of such research.

2. Membership is on an annual basis and depends on payment of the

subscription for the current year January to December.

3. The subscription can be paid together with the conference fee.

vii
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A Note on the Review Process.

The Program Committee received a total 152 research report
proposals that encompassed a wide variety of theoretical and
empirical approaches. Clearly the process of reviewing such a
diverse collection of papers cannot be reduced to an algorithmic
procedure. It is a process that copes with novelty and diversity
by relying on situated wisdom and judgment. Nonetheless a few
general remarks can be made.

Each proposal was sent to three colleagues for review with the
request that comments be provided when considered appropriate and
that these would be forwarded to the author(s). The review
categories were:

A: Definitely accept
B: Accept with reservations
C: Accept as Poster
D: Reject

Some colleagues were unable to complete their reviews and others
did not writ comments to explain their decisions. All comments
received were sent to the authors when they were informed of the
Program Committee's decision.

The Program Committee completed additional reviews to ensure that
every paper received a minimum of two reviews. In 55 cases. there
was clear agreement between two reviewers and additional reviews
were not solicited. All other papers received a minimum of three
reviews.

The Program Committee took the view that PME actively encourages
participation and serves to stimulate intellectual dialogue.
Consequently, there had to be clear evidence that a proposed
research report was either inappropriate with respect to the goals
of PME or contained inadequacies or inconsistencies before it
could be rejected. Every proposal receiving review categories of
B, B and C or better was automatically included in the Program.
The most favorable reviews received by any of the rejected papers
were B, B, D. Each of these cases was debated in detail by the
Program Committee. The Program Committee completed additional
reviews of all cases in which a unanimous decision could not be
made on the basis of reviewers comments. These included all
proposals that received ratings of A and D from different
reviewers. Some papers therefore received five reviews.
Eventually, 32 proposals were accepted as Posters, 111 proposals
were accepted as Research Reports and the remaining 9 proposals
were rejected.

ix 1 0



A note on the Grouping of Research Report

The Program Committee followed a reflexive process to group the
research reports. An initial organization scheme was derived from
readings made when deciding whether to accepted particular
research papers. We attempted to place all accepted reports into
these groupings and became aware of limitations in the initial
categorization scheme. We therefore revised this initial scheme
and attempted a second grouping of papers. This process was
repeated several times to yield the grouping used in these confe-
rence proceedings. The majority of papers focuded on either
Aatlienwiticca &adding, Mathematical teaching on Yarint Wenaction.
These were used as the three main categories for sorting papers.
Several papers dealt instructional approaches in a theoretical way
and it was not possible to justify their placement in any of these
categories. They were therefore taken to constitute a fourth
grouping that we have called Didactical Analiptz.

Most of the reports that focused on mathematical learning
investigated student's conceptualization of specific mathematics
content and could reasonably be further organized in terms of
these concepts, for example rational number or algebraic thinking
and functions. Other papers that focused on the mathematics
student were grouped together as Affect, Beliefs and Metacogni-
tion. A final category within the grouping of mathematical lear-
ning was formed of those papers which examined social-psychologi-
cal issues of Social Interactions, Communication and Language.

The reports that focused on mathematics teaching were also fairly
easy to separate into those that dealt with teachers beliefs or
social-psychological factors and those that dealt with their
mathematical understandings. Reports in this latter group are
concerned with teachers' mathematical understandings as they
relate to their pedagogical practice. Those papers which focused
on teachers or prospective teachers as learners of mathematics peq
oe were grouped with other reports on mathematics learning.

It will be noted that we have not used the traditional categories
of problem solving or of instructional technology. Recent research
has demonstrated that mathematical cognition ift situated, and
domain specific conceptualization plays a Crucial role in
successful mathematics problem solving. A report of a study that
used whole number problems can be interpreted as an investigation
of an important aspect of arithmetical competence. Such paper
were therefore put with the mathematical content on which they
drew. Similarly, papers that could have constituted a grouping on
technological issues typically dealt with student learning of
concepts and skills in computer environments. While technology is
clearly an important theme for PME, the Program Committee took the
view that this work and that which focuses on the development of
specific mathematical concepts should mutually inform each other.
Papers that dealt with learning in computer and non-computer
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environments were therefore grouped together according to the
mathematical concepts of interest to facilitate dialogue among
researchers. It would also have been possible to form a separate
grouping of reports that emphasized the influence of social or
cultural factors on the development of specific mathematical
concepts. Again, while such investigations are central to the aims
of PME, issues raised in these reports are relevant to colleagues
who investigate learning across computer and non-computer environ-
ments and in relation to concept development or problem solving.
Consequently, reports across these different perspectives were
grouped together to facilitate intellectilal interchange.

Thus the major categories used in grouping research reports
related either to the mathematical content or to affective issues.
Within these grouping, papers were further sorted into those that
referred to student learning, to factors in teaching, to the use
of technology, to issues of problem solving or to social and
cultural aspects related to that content. Care was taken in fina-
lizing the program that those primarily interested in, for
example, the impact of technology would be able to select across
the various categories to find presentations on their interests at
any given time slot. Similar attention was given to the papers on
problem solving, studies related more to teaching and those
focussing more on learning. Any overlap between presentations
were minimized by also taking the level of teaching or learning
into account when allocating specific time slots.

The program committee wishes to emphasize that grouping used in
these proceedings are in no way absolute. They are merely a social
construction that seemed useful to organize the reported research
activities. Conference participants are encouraged to read the
abstracts when selecting sessions to attend.
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PLENARY SYMPOSIUM

The responsibilities of the PME research community.

In this symposium the panel members will be challenged by the
chair to specify their understanding and beliefs concerning the
theme.

Questions such as the following will be debated:

What is the main function of research in mathematics education?

How should we choose what to research?

Who are the best people to do research?

Where should the research be carried out?

To' whom is a researcher accountable?

How should researched knowledge be used?

There will also be opportunities for questions and comments from
the floor
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The Knowledge of. Cats:
Epistemological Foundations
of Mathematics Education

Robert B. Davis
Rutgers University
New Brunswick, NJ

In the recent past data from tests and questionnaires
has been respected, but data from videotapes has
tended to be questioned. Reasons are given why that
is now changing.

Mathematics education is achieving a maturity that many of us never
expected to see in our lifetimes. It is also witnessing some major
changes in people's notions of what constitutes mathematics, what it
means to know mathematics, and how people can best learn
mathematics.

While all of this is of the greatest importance, I want to deal with
another change that is probably less apparent, but may be of special
significance for those of us who are concerned with research in

mathematics education. Specifically, I want to consider what hind of
knowledge one seeks when one studies the mathematical performance of
human beings.

The true source of my remarks is to be found within mathematics
education itself (see, for example, Davis, 1967; Davis, 1988a), but there
is some measure of an external foundation, and a large part of this
comes from the work of George Lakoff and Mark Johnson [Lakoff &
Johnson, 1980; Lakoff, 1986; Johnson, 1987].
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A Rapid Trip Through History. In the earlier years of this century,
"knowledge" was thought to be very, closely related to experience.
Experience was greatly valued; by contrast, what was often referred to
as "book learning" was usually not held in high regard. Thomas Edison
once said that he did not want his son to go to college, and few
presidents of the United States had been college graduates. At that
point in history it seemed relatively easy to describe the kind of
knowledge that one needed to acquire: one needed experience.
Knowledge about the teaching and learning of mathematics was a
matter of experience in teaching, learning, and using mathematics.
This notion of "what constitutes knowledge" came to be challenged,
probably becaLise of the growing influence of universities..

In the middle of the century, and especially after World War II, a

different view emerged, perhaps by optimistic analogy with physics:
researchers pursued forms of abstract generalizations, educational
equivalents of F=rna, or e=mc2. One sought "objectivity", people spoke
of "hard data" and "generalizability"," and considerable attention was
paid to the choices that students made among the options on multiple-
choice tests. Let me warn listeners that I shall not attempt any
serious history of the methods and accomplishments of this period,
believing myself not to be competent for such an undertaking, in part
because my own optimism in this direction was short-lived, and I

quickly turned my attention to the work of Kurt Lewin and to others who
saw the world much as he did. Lewin had a quite different notion of
what constitutes "knowledge."

Piaget, of course, was also an early convert to a different methodology
-- abandoning work on IQ tests, he announced that studying "who got the
'right' answer" was less important than understanding how subjects
decided upon the various answers that they did give, which were often
quite at variance with popular conventional (adult) wisdom. Everyone
has noticed that Piaget was making a shift in methodology; people have
usually failed to notice (indeed, Piaget himself failed to notice) that he
was also shifting to a new kind of knowledge. He tried to cloak his new
knowledge in conventional garments, by (for example) speaking of
stages. He even tried to invoke group theory (rather as Kurt Lewin
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tried to invoke topology and vector geometry). But his real
contribution was far deeper than this -- he gave us a new way of
looking at human thought processes, and he gave us an entirely new set
of expectations. I personally will never forget watching my young son
confidently maintain that there were more pennies in a row where they
were spread further apart. Without Piaget, I .would never have thought
to test such a ridiculous possibility.

So -- what is it that science (or serious research, whatever you may
choose to call it) gives us? Sometimes it is, indeed, some kind of
generalization that can be coded in some symbolic or abstract form:
"chlorides tend to be soluble, sulfides tend not to be" or "the length. of
stretching is proportional to the applied. force" or "pV = nRT" or "there
are exactly 92 elements and can never be any others." [Of course, as
this last generalization shows, some of these statements may
subsequently turn out to be false; this is one of the most endearing
aspects of science: truth is always temporary.]

Of course, as Herbert Simon (personal communication) points out,
sometimes a "scientific theory" seems more like a piece of friendly
advice. To use Simon's example: What is the "germ theory of disease"?
Simon's answer: "The germ theory of disease is this: If you want to
know why someone is ill, try looking for some kind of bug." Simon
makes an important point, but please notice that what he has described
does not sound in the least like the usual popular view of what "science"
is!

This "germ theory of disease" is not really an abstract generalization at
all. It is, in fact, a pew way of thinking about some class of
phenomena. This is also the kind of thing that Freud gave us (not
entirely correctly, as we now know). Freud's contribution might best
be described as "some new ways of thinking about why people behave
the way that they do in certain kinds of situations," as when we
interpret feelings by saying "I am angry at the boss because I am really
yery angry at my father." Here, too, the contribution or "result" is_

nothing like a specific, sharply defined, abstract generalization. It
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might better be described as a suggestion of one jcind of thing that one
ought, perhaps, to look for.

My purpose in these remarks is to consider in greater detail what it
means to have a new conceptualization, a "new way of looking at certain
phenomena." I want to argue that what it really means is to have a new
collection of basic metaphors. And that, in turn, brings into question
the idea of what a metaphor actually is.

We used to believe, Lakoff argues, that "metaphors" were certain kinds
of things that we make use of jn order to communicate with someone
else. But in believing this we were mistaken. Metaphors are far more
important than mere tools of communication -- they form a large part
of the mental representations by means of which we think. Forget

input-output operations; metaphors are essential to our own personal
jnternal information processing.

Each of us has lived so closely with our personal collection of

metaphors -- and our culture has so long relied upon its collection of
commonly-shared metaphors -- that they have become nearly invisible
to us. We have the jdea of many things which, arguably, do not exist at
all. Consider the case of street corner. We say "I'll meet you at the
corner of Hollywood and Vine," and nobody notices how unreasonable
this language is. There is no such thing as a "corner"! If a drug store
is "on the corner", is the stationery store next to it also "on the
corner"? How far back does the corner extend? How many people can

stand "at the corner"? Can three people stand at the corner or is
that too many? Perhaps only one person can stand "at the corner". Any

others can only be pear the corner. [This is an example from Lakoff &
Johnson, but it called to my mind a recollection from my own childhood,
when precisely this question bothered me: How far does "the corner"
extend? Does it extend as far as the middle of the block? Can a whole
drug store be "at the corner", or is it only the corner of the drugstore
that can really be "at the corner " ?] Yet we talk about "meeting someone
at the corner of Hollywood and Vine" and never give a second thought to
the Thing (or should I say, "to the non-existent thing") that we have just
referred to.
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We say "The foundations of that theory are not clear." What is this?
Does a "theory" have foundations? A building has a foundation, but can
a theory also have a "foundation"? To try to put the matter briefly,
hopefully without doing too much damage to the ideas of Lakoff and
Johnson, one might say: We have grown up in a world where a building
is built up, brick by brick, from the ground upward, until it stands there
before us, awe-inspiring or beautiful or practical or ugly, and we are
able to behold (and to make use of) this product of our (or someone's)
construction.

Now, consider a "theory." The idea of someone thinking and testing and
contradicting and concluding and generalizing and doing some more
thinking and some more testing and some more contradicting and some
more concluding -- how can we /ink about anything as elusive as that?
Well, we can't. So we don't. But there is something that we can do.
We can map all of this into a mental representation that we already
possess. We can think of a theory as a building. We already know about
buildings! [Of course, it is interesting that our mapping is not one-to-
one onto we do not usually speak of "the roof of the theory" or "the
windows of the theory" or "the doors of the theory." We might say
"That theory has gargoyles on it!" but then everyone would say that
we were speaking metaphorically. As long as we stay within the
boundaries of the commonly-accepted mapping of "theory" into
"building", people do fiat recognize that we are speaking metaphorically
at all, even though we are. Everybody talks about "the foundations of a
theory." Indeed, everyone talks about "theory building," by analogy with
putting one brick on top of another. This is so common that it has
become invisible, and only by real effort can we even notice that we are
doing it. But, Lakoff and Johnson would say, without it we would be
unable to think.]

This is the kind of observation that you can test for yourself. You try
to think about a "theory" without making any use of metaphors, without
using ideas that were originally developed in your own mind in some
quite different context, for some quite different purpose. [I just
followed my own advice and tried it myself - I found myself thinking of
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"connections" -- one idea was connected to another idea. But isn't
"connection" an idea that I knew about, quite early in life, and learned in
a quite different context -- long before I was concerned with explicitly
thinking about theories?]

Our ability to talk in this way -- more acurately, our ability to think in
this way depends upon the collection of ideas that we have built up
in our own minds. Following Lakoff and Johnson, I will usually speak of
these ideas as metaphors, in order to emphasize that we are mapping
new perceptions into previously-established mental representations
(see, for example, Davis, 1984). Equally, a culture is in large part
defined by the collection of metaphors that are shared in common by
those who live within that culture. What Freud and Piaget and Pasteur
gave us were major additions to our collection of basic metaphors;
after that, because we had some new metaphors, we saw the world
differently. We thought about the world differently.

The Main Claim of this Note: With those preliminaries completed, I

can now state my main point. In recent years there has been a growing
concern to give good descriptions of instances of a human being thinking
about some mathematiCs problem (or in various other ways dealing with
mathematical' situations). One form of this interest is the growth of
videotaped task-based interviews -- that is, videotapes that show
someone working on a piece of mathematics, perhaps while an
interviewer is also present. Another form consists of videotapes of
actual classroom lessons, as in the extremely interesting tape "Double-
Column Addition: A Teacher Uses Piaget's Theory" [Kamii, 1987]. While
many of us have come to value highly such descriptions -- indeed, to see
the collecting of such descriptions as one of the main present-day tasks
of mathematics education -- there are others who prefer to ignore

these descriptions as "merely anecdotal." Clearly I disagree with this
assessment. It seems to me that those who disregard descriptions are
seeing, "science" mainly as a collection of some kind of abstract
generalizations, whereas an equally important part of science --

perhaps a more important part -- is the collection of metaphors it gives
us that allow us to think about the world in certain particular ways.
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It is important to emphasize how invisible these metaphors or "basic
ideas" really are. We have had them so long, and used them so often,
and built upon them so successfully, that we have come to take them for
granted. We can hardly imagine a human being trying to think without
them. An example may help: Let us say that, not having most of these
usual basic ideas, I do nonetheless have some sort of idea of "living
thing" or "animal." I decide to measure the size of the animals in my
neighborhood. What will I report?

Some very confusing data, you can be quite sure of that. I will report
heights of 2 inches, and 14 inches, and 2.4 inches, and 20 inches, and 5
feet six inches, and eight feet, and 6 feet, and lots more. There may
seem to be no pattern. But if I hold up, for a moment or two, on my
busy. activity of making all of these measurements, and instead try to
see some of these animals, I may develop a few basic ideas that will
serve me well indeed: I may learn the idea of a cat, and the idea of a
mouse, and the idea of a dog, and the idea of a human being, and the idea
of a horse. Now, all of a sudden, my weird distribution of measured
heights may begin to show a useful pattern, whereas before they did
not. Measuring heights is one thing, but knowing what a cat is is
something else entirely, and for many purposes it is more important to
know the difference between a cat, a dog, a mouse, and a human being.

The Cats of Mathematics Education. All right. What are these
different kinds of things, these "cats" and "dogs" and "mice" of the
world of mathematics education? Perhaps the main point is that most
people don't know. Consider this example: Typical taxpayers in the
United States read that "the math test scores have gone up this year"
and they are delighted. They do not seem to know that it is possible
that the schools are teaching far more directly to the tests, perhaps at
a very great price in what the students are learning. (And notice the
many ways that testing, and teaching to the test, may reduce what a
student will learn. Here are but a few (see especially Koretz, 1988): (i)
If it isn't on the test, students won't try to learn it, and teachers may
not dare to take the time to teach it; (ii) if it Ia on the test, it may
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become so elevated in urgency that many students feel panic; this is

undoubtedly a major source of "math anxiety", and may also be a source
of gender differences in mathematics test scores [de Lange, 1987;
Dienes, 1963]; (iii) that same elevation in urgency may cause teachers
to teach it more directly, allowing the students less opportunity to
assemble their own background knowledge, to consider alternatives, to
ask questions, etc. [essentially, the "haste makes waste" phenomenon],
so that their learning, while superficially adequate, may in fact be
brittle and temporary, and may cover up deep and permanent
misconceptions [Rosnick & Clement, 1980]; (iv) that testing itself takes
Up time that might have been devoted to other opportunities for learning
[a New Jersey public school recently took stock and discovered that
they were devoting 36 days each school year entirely to testing]; (v) the
content topics that are on the test may not represent what students
most need to learn; (vi) the kinds of behavior that students are asked to
demonstrate on the tests may be mainly simple imitation and
memorization, neglecting other behaviors that are of at least equal
importance in long-term performance levels in mathematics [see, for
example, Hall & Estey, to appear]; (vii) many students make little
effort to deal with tests, and may merely put their heads down on their
desks, or otherwise show clear evidence of non-participation and
probably an overpowering sense of hopelessness; (viii) a heavy emphasis
on tests may induce teachers to use short-cuts that, in the short run,
produce higher test scores, but may actually give wrong ideas about
mathematics [as when a teacher told a student that one could delete the
final zero from 37.10 "because it was not held in by 'book-ends'",
whereas one must not delete the zero from 37.01 "because the zero is
held in by the 'book-ends' of the decimal point on the left, and the digit
1 on the right"].)

Anyone who was familiar with the many ways that teachers and
students respond to various forms of testing would have many questions
far deeper, and far more important, than "whether the test scores went
up or down."

I do not mean to suggest that the important unknown elements -- the
"cats" and "dogs" -- lie only in the area of testing or test-related
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matters. It would be a mistake to point to any single area of. human
mathematical behavior and to suggest that there is where the main
zoological distinctions need to be worked out. Quite the contrary!
Pick any area of mathematical behavior, and most of the ingredients
are, at present, largely unexplored, unidentified, and even unimagined.
How would a person go about solving the "three-switch" problem (Davis,
1985) -- or, for that matter, how would a person go about solving
almost any problem? We have very little in the way of good
descriptions of what someone actually did when they solved some
particular problem (and much of what we do have is due to John
Clement, whose work in this direction has set a world-class standard
- see, for example, Clement, 1982; -Rosnick & Clement, 1980; Clement,
1988; Brown & Clement, in press or to Alan Schoenfeld [see
Schoenfeld, to appear]). Getting this kind of data has not always been
highly valued, because such descriptions have too' often been seen as
"just anecdotal" (although Clement and Schoenfeld themselves may have
broken through this barrier, but most others have not). Well, all right,
if you really don't want to know about dogs and cats. But you are going
to have great difficulty in making sense out of those numbers you are
carefully measuring for the height of "an animal". It really _helps to be
able to distinguish the mice from the horees, so you know more
precisely what it is that you are measuring.

Lest I seem to overemphasize rests as the area of greatest interest, let
me look at one other area. the specific treatment of highly specific
content topics. This is one of the great disappointments in
mathematics education. Good teachers repeatedly invent some
extremely effective ways of presenting certain specific topics, but
their methods are rarely passed on to other teachers, who are
consequently left to invent their own methods, and the later methods
are often inferior to those that were lost. Probably the specificity of
the topics and the methods make transmission to others quite difficult.
Also, the advantages and disadvantages are often impossible to predict
in advance. We have all seen many examples. In my own case (and this
is an area where we are almost compelled to use personal data, since so
little shared data seems to be available in any public forum), I

originally taught mathematical induction largely as I was taught it, and
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rather along the lines in most books. I used induction to establish De
Moivre's theorem, or the formulas for the sum of the first n positive

integers and for the first n squares:

P(n): 1 + 2 + 3 + + n = (n(n+1)]/2 (eq. 1)

d(n): 12 + 22 + 32 + + n2 = [n(n+1)(2n+1)]/6 (eq. 2)

If one watched students carefully, one saw that some made correct
proofs.. Many, however, wrote something that seemed to them like a
proof -- indeed, it even looked like a proof, provided you didn't think
about it too carefully. But it wasn't. In a correct proof, a key step
involves getting from P(n) to P(n+1). One is supposed to do this by
adding (n+1) to each side of equation (1), and then simplifying the right
hand side of the resulting equation. From this one can legitimately
conclude that the statement P(n) implies the statement P(n+1). By

contrast, the incorrect "proof" that some students wrote involved

.getting from equation (1) to P(n+1) by merely replacin.g the variable n in
P(n) by n+1. The resulting equation looked good but the method by

which it was obtained had no legitimate logical justification.

All of this occurred at University High School, in Urbana, Illinois, a very
special school for academically-gifted students. The distinction
between the two methods of 'obtaining P(n+1) was so subtle that it gave
trouble to many students, gifted though they undoubtedly were. Two

colleagues, Pat McLoughlin and Elizabeth Jockusch, suggested that we
not begin the topic of mathematical induction with algebraic examples
such as these, but rather with examples that involve no algebra
whatsoever. We did this, using problems such as:

A "checker board" type of playing board has 2^ squares along each side.
One corner square is removed. Prove that the resulting board can be
tiled exactly by using a three-square tile with the three squares
arranged in the shape of an "L".
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There are 2n points in a plane. Prove that it is possible to connect each.
point to one other point in such a way that the connecting line segments
do not intersect. [This problem was suggested by Brian Greer, and was a
welcome addition to our collection.]

When we changed our presentation in this way, always being careful to
begin the topic of "proofs by mathematical induction" with no n-
algebraic examples, the incorrect process of merely substituting n+1
for n in P(n) was, of course, impossible, and students had no difficulty
(other than the difficulty of inventing a suitable proof, of course). As
often happens, once students had learned a correct notion of what was
going on, when we did finally turn to "algebraic" = theorems, the students
were well able to deal with the "P(n) to P(n+1)" -distinction that had,
previously, turned out to be so troublesome.

Now in one sense this is a small detail. Of course it is. But precisely
this kind of "small detail" can make the difference between a course in
which students move quickly to a powerful command of mathematics,
and one in which students are often confused, much time is wasted, and
things don't seem to progress as we would wish.

It would seem that this kind of knowledge would be avidly sought after,
and eagerly transmitted to colleagues. Few of us wish to be selfish,
and to hoard whatever improved methods we may devise. Yet in fact
very little of this kind of knowledge is ever shared with others, beyond
perhaps colleagues in our own school. I suppose the reason is that
mathematics education has never found any suitable way to report such
a "result". It is rather as if we have come upon some new kind of cat,
but have no means for describing it. Such small "details" probably
cannot, and probably should not, be made the subject of a large-scale
statistical study. There are far too many of them. We meet several,
or perhaps dozens, every day. Dealing with them each in separate
"scientific" studies would be unthinkable! Of course, this is a place
where videotapes of actual classroom lessons may help; or one can hope
that many of these ideas will be incorporated into better textbooks (but
this rarely seems to happen, perhaps because prospective purchasers
are not quick to see the subtle merit of the slightly different
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approaches). In any event, this is another kind of case where specific
knowledge, not abstract generalizations, seems to be what is needed. I

suppose every one of us who has taught mathematics has a large

repertoire of "specific" methods of this sort. And few of us will be
able to pass many of them on to anyone else!

This is a large loss. It is also a big mistake that academic life does
not seem to value this kind of "knowledge". It was precisely this KU
of knowledge about harmony and counterpoint and texture that let

Beethoven compose his magnificent .string quartets. He was lucky; the
results could be widely shared, even though his actual methods of
thinking about music have .for the most part not been., We should no
more dismiss someone as "a great teacher" -- a demeaning assessment
in modern intellectual life -- than we should suppose that Beethoven

was nothing more then a careful craftsman, with nothing of intellectual
value to share. A ."great teacher" has a very large store of valuable
specific knowledge that is precious beyond measure..

Comparing Kinds of Knowledge. That brings us back. to the question
of "measuring". If the specific knowledge of. what .a "cat". is and what a
"dog" is has been undervalued, is it possible that reports of

rneasurements have often been overvalued? Clearly I would argue that
they often have been, as in the reporting of test results, the meanings
of. which are usually not clear at all, and seem only rarely to be brought
into question.

There is an intellectually trivial, but practically important, case that
should be mentioned in passing: specifically, the.. use of seemingly
careful quantitative measures, where what is being measured is' almost
completely undefined. As one, example: Those of us who work in in-
service teacher education are familiar with a few school
administrations that seem to want to buy generic black-and-white
labeled "teacher education in mathematics". These schools appear to
have no concern as to what is taught or learned in the in-service course,
nor how it is presented to their teachers. The in-service mathematics
"content" might be the good use of calculators, or the advocacy of 37
(poor) ways to use calculators, or two dozen reasons for not using
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calculators, or how to teach tensor calculus to fourth graders, or how
to conduct more efficient rote drill. The actual content seems not to
matter. Yet precisely this sort of thing is sometimes "quantified."
This is very much like buying "two quarts of something" without regard
for what. To have any reasonable notion of what you are buying, you
need to be able to specify it in far greater detail than that; indeed, in
the case of in-service teacher education, you need to specify not only
the content, but also the kind of experiences the teachers will have.
Will they listen to lectures? Use Cuisenaire rods? Work with
computers, hands-on? And what will be the purpose for the use of
computers? Will the in-service teachers explore their own ways of
trying to solve novel, unfamiliar problems? Or what? Will the
atmosphere be challenging, or supportive, or what? Will the details of
the concepts and the experiences have been carefully thought out
beforehand by the teacher educators? Do the members of the (probably
visiting) instructional team agree or disagree on these details? The
"something" that you are buying as "teacher education" may perhaps be
well enough defined if you say, for example; "two weeks of -study in the
First Course of the Marilyn Burns program," or perhaps "the initial
course with the Mathematics Their Way group" [see, for example, Burns,
1984]. But anything much less specific than this is not really
quantifiable because you don't know what it is.

But the phenomena I want to discuss are deeper than this. Can
"quantitative" knowledge mislead us in fundamental ways? Can there be
important knowledge that is not, and cannot be, "quantitative"? I want
to present arguments for the affirmative answer to both questions.

Are there Fundamental Reasons for Asking Whether Abstract
Generalizations and Quantitative Knowledge about Learning
Actually Exist?

Is "hard evidence" really evidence at all? To put this in perspective,
let me ask some subsidiary questions: Should we try to use human
intelligence, empathy, intuition, and all other available human
resources to try to improve the teaching and learning of mathematics?
Answer: Of course we should'
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Is there such a thing as knowledge about the teaching and learning of
mathematics? Answer: Of course there is. and many good teachers
have a lot of it!

Does this knowledge take the form of abstract generalizations? [The

answer here must necessarily be left as an exercise for the reader, but
you might ask yourself this: What abstract proposition, if it were

suddenly to come to be known to be true, would revolutionize the
teaching and learning of mathematics?]

Perhaps more fundamentally, do important educational phenomena
replicate? It has generally been assumed that they do. (There

certainly are a great many unimportant educational phenomena that
replicate very nicely, but when you are studying them you may mainly be
studying the statistical properties of white noise.) Of course you can
average over many cases. This will produce some numerical results.
Unfortunately, that which is true for most people (or even true of all
people) is nearly always trivial. (Remember John Maynard Keynes'
basic economic law: "In the long run we'll all be dead.")

How Can This Be? A Practical Demonstration. How can there tua
knowledge, and yet have a situation where that knowledge is nQ.t in the
form of abstract generalizations? Let me give, first, a practical
demonstration suggesting that this might be so.

Example 1: At the time of the Cuban missile crisis, I was teaching the
daughter of a TV newscaster who was involved in reporting the

situation. She -- and more particularly some of her classmates
were quite visibly upset by the crisis. So were the teachers, for that
matter. Who would not be? If you knew much about what was going on
at the time, you had to worry that this could be the start of World War
III; and, given the presence of nuclear weapons in nearby locations, that
might turn out to be a very short war indeed! One could easily imagine
that democracy was about to be erased from the record of human
history. I and other teachers believed that this had a very noticeable
effect on the schoolwork of these students. I had never seen anything
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like it before, and I have seen nothing like it since. But a great many
things will happen only once in a lifetime. That is to say, they may
never happen again in any world that resembles the one we live in today.
And they may never have happened before in any world that resembles
the one we live in today.

Example 2. In the work of the Madison Project [see, for example, Davis
1988b; Lockard, 1967; Howson, Keitel, & Kilpatrick, 1981] it appeared
that many of our experimental classes were greatly influenced by a few
-- one, two, or three -- dominant students. The values of these
students shaped the commonly-expressed values of most of the class.
But these students tended to be very individualistic. Like John Kennedy
and Jimmy Carter and. Ronald Reagan and FDR, no two were alike. We
never found the situation repeating itself. [Those who have viewed
many of the Madison Project films, which show actual classroom
lessons, have seen this phenomenon for themselves.]

Example 3. One of the most effective teachers I ever had was
Professor Hans Mueller of the MIT Physics Department. Among his
other features, he had a striking and delightful German accent [think,
for example, of the Danish accent of Victor Borge]. I always felt sure
that this helped hold students' attention, and certainly seemed to make
physics a more "human" activity. But would anybody suggest that a
foreign accent is routinely to be considered a desirable attribute for a
college teacher? On the average I'm sure it is not.

Have I learned anything from all of these experiences? I would argue
strongly that I have. What kind of thing that knowledge is is a matter I
will return to shortly.

How Can This Be? Theoretical Considerations. Let me give
three kinds of reasons for suspecting that "average" behavior may be
mainly an illusion.

Reason 1. Consider the case of a random walk. We know that, if a
random walk takes place along a line (a "one-dimensional random walk",
as mathematicians say), then with probability 1, we will find ourselves
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in a small neighborhood of any point that you may select. In particular,

if we have visited a neighborhood once, we know we will pass that way
again. So, if the educational phenomena we care about should be
represented by a. one-dimensional random walk, there will be some
reasonable kind of replicability.

The same thing will be true if, instead, the educational phenomena we
care about should be represented by a two-dimensional random walk; by

motion in the Euclidean plane (that is, there are two important

variables). Here, too, each neighborhood will be revisited with

probability 1.

But suppose that the educational phenomena that we care about may
involve three variables, and so need to be represented by a three-
dimensional random walk. No similar result applies. Pick a
neighborhood of some point in three space, and you can no longer be
confident that we will pass that way again.

Now -- how many variables are needed to describe the essential
features of important educational phenomena; how many dimensions do
you think are needed for a good representation of most of the

educational phenomena that we really care about? Ten? Or a hundred?

Or perhaps a billion? Or 1023? Or how many? So, if we have a good
geometric description of the space of possible situations, how likely
are we ever to see that situation again? Jt is next to certain that we
never will!

Reason 2. The educational phenomena that we really care about can not
be tested independently. As someone has described it, "they must be
tested as a corporate whole." Consider, for example, the case of Sharon
Dugdale's computer-based lesson. (on the University of Illinois's PLATO
computer system) using a- simulated pin ball machine. The pin ball
machine simulation is attractive. Any one of us might enjoy playing it.

But when Sharon first developed this lesson, she used it for the
mathematical topic of tractions. Although its appearance was the
same in both versions, the fractions game was not fun. It was tab
slow; few if any of us can solve problems involving fractions with the
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lightening-like speed that is required to make pin ball exciting. When -
- keeping the format unchanged -- Sharon altered the mathematical
content, from fractions problems to whole-number problems, the game
became fast enough to be real jut Now, was that a good format, or a
poor one? It depended upon just how it was employed! (The first
college course in psychology that I ever took was subtitled: "It's not
what you do, it's how you do it!") Consequently, the common idea of
testing parts or single aspects of educational experiences or
performances is usually untenable. It's really true: It's not what you
do, it's how you do it! You have to test that particular combination of
things. Testing one or two variables at a time, as is commonly done, is
very often misleading. (And some people have wanted to test the
proposition: "Is computer use in school really helpful?"!)

Reason 3. Thanks to James Gleick's book, everyone now knows about
chaos [Gleick, 1987]. It was not always so. Perhaps one should start
the story in 1961, when Edward Lorenz's mathematical models for
weather phenomena suddenly demonstrated an unanticipated aspect:
Given the slightest, smallest change in initial conditions, the long-term
consequences could be unbelievably great. [Gleick, pp. 16-18.] The
phenomenon has been described by saying that the motions of the wings
of a butterfly in Brisbane, Australia may cause a tornado in McCook,
Nebraska. In a sense, a very small event may act as a "switch" to turn
on powers far vaster than it itself, whose effects may be felt in remote
times or places. Lorentz himself said: "... any physical system that
behaved non-periodically would be unpredictable." [Gleick, p. 18.]

But some weird form of instability is not the only issue. There is also
the question of averages. Given any finite sequence of numbers, you
can, of course, compute an average -- but what you get is, in actuality,
a number. That number may, or may no, have much meaning. If I have a
random sequence of numbers, I can compute their average, but the next
time I have a new random sequence, I may well compute an entirely
different "average" for this new collection. There is no necessary
relation between these two "averages."
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In fact, there are many different kinds of sequences that may appear,
whether we are studying meteorology (like Lorenz),' or abstract
mathematical systems (like Stephen Smale and James Yorke), or the
population level of fish (like W. E. Ricker), or income distribution
(Benoit Mandelbrot), or the price of cotton (Houthakker), or abstract
populations (like Robert May), or epidemics of measles or polio. Gleick
[p. 72] gives this sequence:

.4000, .8400, .4704, .8719, .3908, .8332, .4862, .8743, .3846,

.8284, .4976, .8750, .3829, .8270, .4976, .8750, .3829, .8270, ...

and so on. You can compute the average of the first n of these
numbers, but you may be hard-pressed to explain what that average
actually means. Habit has made us all accustomed to believing that the
average of a sequence of numbers has some sort of meaning, something
close to the popular notion of "average." But in all of the fields
mentioned above, there are now some famous examples that show that
these "averages may be little more than numbers obtained by a
mathematical calculation, not easily related to real world phenomena.
What these sequences of numbers are telling us is complicated, and I

refer the interested reader to the relevant literature, perhaps starting
with Gleick, 1987.

How Hard Is "Hard" Data? Perhaps the most remarkable aspect of
the question of "hard data" is actually very simple. People, from
newspaper readers to educational researchers, Ca believe in "hard" data.
But think, for a moment, of what is actually involved. A group of 11th
graders, say, come into a room to take a test on "mathematics". Two
students put their heads down on the table and make no pretense of
trying to answer the questions; one feels hopelessly defeated by school;
the other does not, but has had little sleep for three days now, because
he works nights. Another student, Bill, has memorized all of the things
that the teacher has told him to memorize. He doesn't really
understand it, and if you were to ask him what the role of axioms is in
mathematics he would have no idea; since the teacher has not told him
to memorize that, and it never occurred to him to think about why
axioms were used so prominently in tenth-grade geometry. Another
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student has worried so much about whether she will remember all of
the formulas and definitions that she is virtually unable to think about
what day it is, what city she lives in, or what her name is. Alex has
practiced solving type problems, and does them quickly, but also does
not understand, and doesn't want to. Tom is the best student in the
class when there is a really hard and novel problem that no one else can
solve, but he is not at all diligent in doing homework or remembering
definitions, and will get quite a few problems wrong because of large
gaps in what he has attended to. Andy works hastily, and makes many
errors. Jill has been absent, due to illness, and finds that many
problems on the test are totally new and totally meaningless. They are
also meaningless to Toby; he had planned to study hard for this test, but
wrote down the wrong date on which the test was to occur; he had
planned to use all of the coming weekend to study for it. Carolyn really
understands mathematics, and has come into the test expecting that she
will have time to derive any formulas that may be required; she will
turn out to be mistaken in her estimate of the amount of time that she
will have to work on each problem. [These are all like students I have
actually observed; anyone who sees many classes of students could add
some further types of likely behavior.] Now they take the test.

Every bit of the complexity of who the students are and what they are
doing could be matched by complications in the design and selection of
the material to be tested, and in the expectations of the kinds of
behavior that the students should be able to demonstrate. Is "removing
parentheses" actually a part of basic algebra? Must students know how
to determine some of the properties of a function by scrutinizing a
table or a graph? Should students know the abstract definition of a
"function" as a set of ordered pairs? How much credit should be given
for the solution of a novel problem, not expected by the students, that
they can solve only by ingenuity or by the skillful use of heuristics?
How much "partial credit" should be given for a correct method, if the
work also contains a "minor" numerical error? Would your assessment
be different if the resulting erroneous "answer" should have been seen
to be clearly ridiculous?
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But -- somehow this diverse group of human beings, with their very
different patterns of behavior, do (mostly) manage to work on this not-
at-all "objective" collection of problems, and to display behaviors that
will be imperfectly reflected in what they write on their papers, and
which will be somehow "evaluated" by essentially arbitrary weighting
of what kinds of behaviors are most important, and what kinds of errors
are most forgivable.

The result will be a collection of numbers that are said to constitute
"hard data". How can anyone believe that hard data actually exists in
the form of some abstract numbers obtained from such an operation?

If we had a large presence of video cameras in schools, regularly
allowing parents and researchers and taxpayers to see the teaching, the
behavior of the students, the conditions of the washrooms, and so on,
would that constitute "hard data" -- harder then the test results, or
less hard?

Then How Can Anyone Know Anything?

If, in fact, the kind of "data" that is commonly gathered and commonly
used as the basis of studies of education does not necessarily give us a
good description of reality, and if our "knowledge" is not to be caste in
the form of abstract generalizations, then how can anyone know
anything?

for one thing, it is possible that a human being can react to the visual
image of other human beings ("body language"), to the nuances of the
human voice, and to the apparent content of "ideas", in a way that is not
well understood at present. Consider how messages are sometimes
interpreted by machines, by trying to locate the message content
through a process of matching against possible messages. This is, in

effect, a search for the appropriate point in a space of possible
meanings. One looks for the point that is "nearest" to the present
incoming stimuli. This, then, is a question of what is the appropriate
metric to determine the "distance" between different meanings. We

know relatively little about the nature of this metric in human thought.
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When we restrict ourselves to abstract generalizations to encode
"knowledge", by implication we also commit ourselves to a set of
assumptions about the kind of "metric" that humans use in trying to

recognize meaning. These assumptions may well be in error. Human
beings may do better than that.

Abstract generalizations are not the only possible means of recording
.

or communicating knowledge. When education students discuss
classroom behavior, they may seem to understand; yet if, at this point,
the students have an opportunity to view some films of actual
classroom behavior, they regularly show surprise, spontaneously
exclaiming remarks such as: "Oh! Is this what you meant!" Clearly,
the abstract descriptions have not conveyed the actual reality nearly as
well as the videotapes do.

But perhaps there is a more fundamental way of looking at the situation.
The videotapes seem able to show possibilities that the education
students did not have in mind. Hence, by viewing the tapes, the
students may be enlarging their basic collection of metaphors. Thus, in
the sense of Lakoff, they can now think about classroom behavior (or
mathematical problem solving behavior) in ways that were not
previously possible for them. They now have some important new
metaphors, and can see the world in a new way. This is a powerful kind
of knowledge.

Giving this knowledge to students (or to other researchers) is a major
part of the job of mathematics education.
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PME algebra resercb. A working perspective.

Eugenio Filloy

Centro de InvestioaciOn v de Estudios Avanzados (Mexico)

INTRODUCTION

It goes without saying that any analysis that seeks to

clarify given educational problems and that is a prime
mover in educational research - will have to make within the
context of an Educational System. However, as a counter-

measure in itself, as well, this study can do no more than

attempt to change the conditions under which mathematics is

taught in that System. Naturally, the problematic is af-
fected and, ultimately, the methodology of the research.
However, there is also the point, usually ignored, that the

results are conditioned by the need of be usable, to be put

to tests precisely where supposedly, it is wanted to cast
light where changes in them will have to be taken into ac-
count in order to continue to move forward, to go more
deeply into the facts discerned, to be able to formulate new
hypotheses that have already duly consider the work done.

This point impels the issues to be closely linked to

the very teaching process, that is, to the pedagogy of math-
ematics at least, in some of their aspects. It must be
clarified, however, that all the foregoing does not imply
discarding some-what theoretical problems and their logical
and appropriate methods, but rather than these investiga-
tions are made within the context of much broader programs
in which direct work with student and teachers is involved.
And so, in this paper, it will be proposed that studies in



which historical - critical analysis of the development on

mathematical ideas takes on full meaning, are those in

which, not only such analysis make possible, for example,

the construction of learning sequences that reflect the

achievements of theoretical research, but when the history

of ideas is enriched by new hypotheses arising from the test

of pedagogical sequences within educational systems them-

selves. Only in this case, would we be able to be present-

ing a study in both the field of education in mathematics

and in the history of epistemology of mathematics.

EPISTEMOLOGICAL ANALYSIS.- BRIEF EXAMPLES.

History has once again recovered its proper dimension

after having been relegated to being a pastime for mathe-

maticians, although striking works [53] were produced, as

well as general panoramas seen from a new viewpoint, [ ]

reaching even textbooks [18].

However, Boyer himself [ 8 ] had already offered us

more profound efforts to capture other more intense moments

which concerned the history of ideas. Numerous other titles

could be mentioned here that illustrate this great return of

history as an instrument of seeing the present. We can

speak of epistomological studies that have had influence in

mathematical education research. By instance, the works of

Brunschvig [10], Piaget [47], and Galperin [36] have been

the motive force of a new outlook with respect to elementary

mathematical operations. Our ideas as to the rudimentary

processes of mathematical - model construction have changed

completely since the appearance of historical works on the

Babylonians [46]. Our concepts on the birth of the theory

of proportions, deduction, axiomatization have begun to take

on subtle gradations on which were unaware before [52].

And, the didactics of mathematics also have begun to benefit

from the re-encounter between history and epistemology

through the history of ideas.
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As was mentioned above, it is still necessary to make

an analysis of teaching and learning problems in mathematics

using this historical-critical method and, subsequently, to

put the theoretical findings to the test in the educational

systems for its experimentation and then to go back, on the

basis of the practical results, to obtain a view of the
problematic of the history of ideas that corresponds to the

didactic results.

It would seem extremely important at this point to go

back to history and analyze the works of the Middle Ages in

this respect. We owe a great debt in that area to the his-

torians (see[12), [13), (19), (45), [37], for example) since

their recopilations, translations, and commentaries give us

live material which are at hand for whoever approaches them

with a fresh outlook" on the problematic of the teaching of

algebra at the very moment when algebra is ready to admit
the introduction of analytical ideas in geometry and,

immediately after, the methods of the Calculus.

An example: The Appearance of the Arithmetical - Algebraic

Language

Onewav - The epistemological analysis. Thus, to under-

stand the jump from arithmetic to algebra and the appearance

of arithmetical-algebraic language; one has shed light on

the period immediately previous to the publication of the

books of Bombelli and Vieta.

Vieta's "Analytic Art" shows the construction of an
algebraic language where, besides being able to model

problematical situations resolved in the languages used by

Bombelli and Diophanthus, we can also find language to de-

scribe the synthesis and algebraic properties of operations

presented in the oldest texts. There, however, they were

only employed to resolve and be used problem by problem,

while, in Vieta's case, there is the possibility of describ-

ing the synthesis (algebraic theorems) and the syntactic
properties of the operations. All of these can be described
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on this language level and besides this, can be added to the

body of knowledge of those who dominate this new language

level.

In the following sections we shall describe language

levels before the introduction to the language of Vieta's

"The Analytic Art". We shall try to illustrate some differ-

ences between the Abbacus books and the "De Numeris Datis".

The Abbacus Books

According to the compilation work of Van Egmond [19],

the Abbacus Books represent the most feasible means of as-

similating oriental mathematics to Western European civi-

lization. Thus, a new mathematics takes shape from the

adaptation of Indo-Arabic mathematics to the particular

problems of a society in real economic ascent (the Italy of

the XVth and XVIth centuries). °

This mathematics is ready and available to be applied

in the so-called Abbacus Books, whose contents, essentially,

embrace the presentation of the positional'system of Indo-

Arabic numbering, the four elemental arithmetic operations

and resolved commercial problems. These problems involve

four elemental operations, the use of the rule of three,

simple and compound, of simple and compound interest, and of

the solution of some simple algebraic equations. Some books

include multiplication tables and equivalent monetary,

weight and measurement systems.

The Datis

In contrast with the books of Abbacus, which were used

as elemental algebra texts in intermediate education to be

applied to commercial life, Jordanus de Nemore's 'De

Numeris Datis' [39] was a text directed towards university

students of the period, with the aim of presenting and

teaching solutions to non-rutinary 'algebraic' problems. In

effect, the Datis offers a treatment of quadratic equations,

both simultaneous and proportional, which presupposes the
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handing of equivalent contents as those in the "liber
algebre" of Alkhwarizmi [ 2 ] and the "Liber abaci" of
Fibonacci [21]. In both texts they begin with some

definitions and the development of the equation x2=bx, x2=c

and bx2=c, arriving very rapidly at the equations x2 + bx =

c, x2 + c = bx and bx + c = x2.

According to Hughes [39] , both the kind of problems in

the Datis and the way of presenting these belongs to a more

advanced stage than in the other two works (currently know
as elemental algebra). From this point of view (says

Hughes) the role played by "De Numeris Datis" in mathemati-

cal history is comparable to that of Euclid's Data [20], in

the sense that the former is the first book of advanced al-.

gebra while the latter is the first book of advanced geome-

try and which supposes a good background in fundamental ge-

ometry (contained in "Los Elementos") in order to present

the ambitious student with the proof and solutions of theo

rems and non-standard problems by the method of analysis.

The difference of stages, indicated by Hughes can be

noted in a revision of some problems from the "De Numeris

Datis" and comparing, on the one hand, the method of presen-

tation with, for example, problems of the "Trattato Di Fio
retti" [45]. In the Datis propositions one has to find num-

bers, of which some numerical relations are known but these

are given by constants. That is, one states, for example,

that the sum of three numbers is known (x+ y +x = a) in

place of which the sum of three numbers is equal to a cer-

tain number, let's say 228 (x +y + z = 228, as appears in
Abbacus). On the other hand, the sequence of solution of

Datis problems shows explicitly, the reduction of the new

problem to one previously resolved. This kind of sequence

is not completely absent in the texts of Abbacus. That is
to say there also appears in the Abbacus problems the
repeated application of rules or algorithms wh6n the

procedure for solution has led a well-identified situation

in which the afore mentioned application is feasible.
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Nevertheless, the text of Abbacus do not display in an

explicit way, the intention of reducing to situations, to

previous found and resolved forms. In the Datis this does

form part of the method of solution.

This could be attributed to the fact that expressions

like x+y +z = 8 and x + y + z = b with 8 =b are not
fully identified as equivalent with respect to the proce-

dures and strategies for solution. These, in Abbacus depend

strongly on the specific properties of the number a (or b)

and of its relations with the other numbers which intervene

in the remaining equations of the system in question.

It could be said that the De Numeris Datis in this

sense has reached a more evolved stage, given that, through

identification of more general forms it allows grouping into

large families, problems which could be solved in the same

way. This is not meant to imply however that those strate-

gies and skills necessary for the solution of the problems

in the Datis have reached a higher or more evolved level of

abstractions in the symbolism than those developed by the

texts of Abbacus.

The Appearance of Arithmetical-Algebraic Language

The first thing jumps to mind when faced with problems

and solutions like the ones in Abbacus books is that nobody

now uses this language. Perhaps with the translation writ-

ten in current algebraic symbolism they could take on the

appearance of typical advanced problems in a modern text,

but they differ from these in that the strategies employed

to obtain a result do not obey our habits. Apart from this,

we would not effect many of the operations and intermediate

steps which are apparently necessary there. Today, if we

see if from the point of view of structured adult language,

the language of the books of Abbacus and of the De Numeris

Datis are dead tongues. The translation of these tongues to

a live language impresses by the novelty (to us) of actions

which lead to the same results as ours. These, however,
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follow unimagined routes and for their presence problem by

problem, book by book, show us skills bearing no relation to

those we have developed and utilize with our algebraic lan-

guage. What is more, we were never impelled to build or em-

ploy them in order to confront problems with our skills and

arithmetic knowledge.

The other way around: Empirical Analysis.

The contrasting of these language levels can be found

in [24], [25], [26], [27], where they also analyze diagnosis

made through questionnaires and clinical interviews realized

with students of 12-15 years old which cover areas similar

to the development of the level of algebraic language which

these students develop.

We next enumerate two epistemological theses which

guided these investigations.

Is is almost obvious that when a new conceptual appara-

tus is constructed and this is imposed on us without being

structurally sound, together- with others older and'strongly-

rooted, the new skills tend to shade the old. Given the

fragility with which, in this moment, the new procedures,

the new resolution techniques, etc., can be used, we find

that even problems which had been previously dominated be-

come difficult to model in the new language in which the in-

cipient conceptual apparatus expresses itself.

But it also occurs that the well-anchored intellectual

structures tend to perpetuate themselves and oblige us to

review situations which in the new language, when taking

shape, could be resolved with simple and routinely

operations.

The Synthesis

We recall that we began with the reading and

interpretation of ancient texts (epistemological level) and

we have jumped to the plane of psychological processes. We
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put forward the view that it is precisely this jump there

and back that allow us to offer hypothesis based on the

construction of the general knowledge, and convert them (by

way of a metaphor), into hypotheses on the didactical

aspects of mathematics. We will attempt therefore to relate

that process at the level of the individuals, of the

children which in the case that concerns us, where the
arithmetical language will have to give way to the

algebraic, which will be increasingly more pertinent, even

for those situations which have always been modelled in

arithmetic.

The construction of the new language which will have to

come from the elemental arithmetical operations will (as

already mentioned) need to operate new objets. These will

represent not only numbers but also representations of these

as individuals (as unknowns, for example) as an expression

of the relations between number sets (the proportional

variation, for example), as functions, etc. Algebraic

language tends to be built on new objects whose operations

will not be totally determined until the contours of the

objects' new universe are well delineated and these will not

be well defined until the new operations are structurally

finished, in its semantic and syntactic aspects.

These steps in the construction of semantic and

syntactic fields corresponds to a stratification in the

actions which finally have to be identified in an operation

of the new level of language.

As an example, we note the constant observed in

children constructing intermediate stages that carry the
possibility of solving problems which are able to be

modelled by the equation Ax + B = Cx and therefore to the

elaboration of the necessary syntax for the solution of such

equation. This has a correlation in the evolution in the

books of Abbacus and the next steps as, for example, is

expressed in Vieta's "Analytical Art".
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EXPERIMENTAL WORK

Observation in Class. One of the simplest phenomena
that come to light from the observation in class of
permanence phenomena at a "reading level" with children who
have just finished primary education (around 12 years old)
its the one appearing when faced with questions of the
following type:

Evolution scheme of the equation Ax = B

1.- 3 x 1= 12

2.- 3 x = 672

3.-

4.- 3 x X = 672

5.- 3 X = 672

Between ages 10 and 12 it is easy "to center"some of the students on the of allquestions in the same manner as in 21: whatnumber, when multiplied by 3, yields 72?

When analyzing answers given by children of those ages,
besides ascertaining that such questions are perceived as
different, since some of them can be answered and others
not, we find that it is fairly easy, with students of a
certain profile, to succeed in "centering" them on the use
of the preferred arithmetical method, which is trial and
error. One can even lead them to keep on using such a
method for a long time, in spite of the fact that B numbers,
in the equation Ax=B, keep getting larger and larger;
eventually, this situation places them in a position where
they no longer possess enough

arithmetical abilities, to be
able to answer such a question without making some mistake.

Throughout the first year of secondary school (in the
Mexican Educational System), most students come to prefer

I

59
PII.9



the method of dividing B by A to solve the equation Ax = B,

which is the intended objective of mathematics programs in

this cycle. However, the same phenomenon mentioned above

reappears, with students who had already achieved a great

amount of operating abilities for solving all equations of

the first degree, when the context in which the equation Ax

= B stems from the analysis situation during the resolution

of a word problem.

But even more strikingly, it also happens when the

expression Ax = B occurs -written by the same subject being

observed- , and this symbols are not recognized as the

expression of an equation which a few moments before could

be operatively handled to arrive at a solution. The context

in which the equation appears, even in its written form,

causes the formerly acquired operability to be "forgotten",

and the subject once more shows a preference for the

arithmetical method of trial and error; in some cases, the

difficulties reach such a point that no solving method can

be put into play. A more careful description of what is

happening here, in the latter case, shows that it is the

interpretation of the x symbol what become's crucial for the

decoding of Ax = B; thus x is interpreted as "an unknown",

and the subject does not know that to do, for in his own

words- we are dealing with something which is not known" (it

should be borne in mind that we are at the time in teaching

when we are trying to succeed in starting the students in

the use of what he or she has learned about the solving of

first- degree equations, such method to be applied to the

solution of problems appearing in mathematics, physics, and

chemistry classes, among others).

These observations can easily be done in the classroom,

and it is possible to infer there, that these facts are

linked to many others, which are instances of the intrinsic

difficulties which the learning of algebra presents: the

usual errors when working operatically with algebraic

expressions; translation error when using algebra to solve
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problems written in the usual language; erroneous
interpretations concerning the meaning of algebraic
expressions (given the different contexts where they
appear); difficulties to find any meaning; the impossibility
of using algebra to solve usual problems, etc.

Experimental Observation

In order to observe these phenomena with greater
precision it is necessary to have recourse to an
experimental situation which permits to, control some
disturbing factors which are always present in the
classroom, i.e, to possess observation mechanisms which
permit a more thorough and accurate analysis; this, however,
in such a way that the situation observed does not have to
do only with the problems presented by the subject under
observation; it is necessary that the components which
teaching puts into play are also present..

Five years ago, at the Centro Escolar Hermanos
Revueltas in Mexico City, an experimental design was mounted
whereby the teaching of mathematics, throughout the six
years of secondary education, could be controlled from the
standpoint of the teaching objectives aimed at, and also
possessing a control on the teaching strategies employed
throughout the whole of the middle-basic education cycle.
Furthermore, a laboratory for clinical observation was
installed, where individual or group interviews can be
performed, with an option to videotape them. Clinical
interviews possess a structured format; yet, the interviewer
can move freely between each one of the previously designed
steps, allowing it to be the interviewed subject's line of
thought the one that defines each of the subparts in the
interview. Except in those cases where the subject has no
problem at all to solve the proposed task, the interviewer
intervenes by proposing new questionings that allow the
subject to learn (through discovery) the task which he or
she initially could not solve. The idea is to discover the
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difficulties posed by the learning of initial algebra, given

the usual ways in which at present this subject is tried to

be taught. These are clinical interviews where the

observation focus is placed on the usual teaching methods,

and on the peculiar ways (along with their typical

obstructions and difficulties) that subjects present during

learning.

On the basis of this infrastructure, the project

Evolution of Symbolization in the Middle-Basic School Level

Population has been developing, and as a part of it, the

study, Acquisition of Algebraic Language has centered on the

interrelationships between two comprehensive strategies for

the design of learning sequences that cover long periods of

time, for the middle-basic algebra curriculum. These

sequences are:

a) The modelling of "more abstract" situations in "more

concrete" languages, in order to develop syntactic

abilities.

b) The production of codes for the development of problem-

solving abilities. The use of syntactic abilities

for the development of problem-solving strategies.

Broadly speaking, through a) it is intended to give

meanings to new expressions and operations, by modelling

them in more concrete situations and operations. Under b),

(in such a way that problem resolution codes are generated)

the idea is to give to the new expressions and operations

senses that arise from the fact that certain abilities in

the syntactic use of the new symbols can be counted on, as

well as on their use in a "more abstract" language.

The Theoretical Framework

Leaving aside empirical observations such as the

one described in the first paragraph of this Section, the

theoretical guidelines of this project derive, essentially,
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from three components: an epistemological one based on the
analysis of Middle Age and Renaissance texts (a description
of it can be found in [28) and [30); a second line comes
from semiotics, which is intended to be a guide for the
analysis of algebra, when the latter. is considered as a
language (see, Bibliography, in U. Echo's work [17)); and
lastly, cognitive psychology, with its recent developments
in the field of language acquisition and its relationships
to a language pragmatics, has been an invaluable theoretical
source (see for instance, Series [50) and [51)).

To develop in a precise way the theoretical model
which we are using is not within our scope in this-moment (a
brief description will be found in a latter section). We
will here limit ourselves to appeal to the reader's
intuitive concepts concerning terms such as semantics,
syntax, semantic charge, more concrete or more abstract
language level, the reading level of a text, and so forth.
We do this, in spite of the fact that one of the
consequences of the interpretations derived from these
studies.is, precisely, that many of the usual errors which
are committed when using new expressions stem from the
subject's anticipatory mechanisms when he or she is decoding
a situation that must be modelled in that language, and
where the semantic charge produced by the subject's previous
experience plays a decisive role in the trust that
statements given to some of the proposed problems are valid
in themselves, even when "read" within the perspective of a
different theoretical frame-work, and that "facts"
described, even when given other interpretations, possess
and intrinsic interest.

In a series of articles describing the results of our
project, OPERATING THE UNKNOWN AND CONCRETE TEACHING MODELS
(Filloy/Rojano), we tried to approach various aspects on the
interrelationship between semantic and the syntactic
components of the problem, seen from the point of view of
teaching strategies for types a) and b) which have been

t.'
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briefly described above. As the title suggests, these

articles focus on type a) strategies, and on the moment in

teaching when the aim is to teach how to operate the unknown

that appears in first-degree equations. We did not approach

there the analysis of what happens when a totally syntactic

model is used as a teaching strategy, although we

anticipated that also in this case phenomena possessing the

same nature as the one described here for concrete models,

become present. It will not be missed on the reader that

the aspects of type b) strategies also appear here when

describing the mechanisms that come into play at the time

when abstraction processes of the operations unchain

themselves. Nevertheless, the whole focus is placed on type

a) teaching strategies, on their relationships with the

appearance of usual syntactic errors, on their differences

from one model to the other, and on the relationship they

maintain with respect to the subject's previous attitudes,

especially in terms of extreme positions between the clearly

syntactic and the purely semantic tendencies displayed by

the subjects. In this article, emphasis will be made on the

abstraction processes of the situation posed, as well as on

the operations involved.

The general description of the contents in that series

of articles shows that there exists a dialectic between the

syntactic and the semantic progresses, and that progress in

one of these two components implies progress in the other

one. The analysis is made from the point of view of the

usual strategies in the teaching of algebra. The starting

point is the belief that the "facts" reviewed are not taken

into consideration by the present educational systems, and

that the various misconceptions and errors in the use of

algebraic properties that are intended to be taught for the

first time, are left to the later rectifications that the

students might be able to achieve spontaneously. In the rest

of this-section we will present a brief summary the contends

of those papers:
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First.- The solving of equations and the transit from
arithmetic to algebra.

We present here the theoretical and empirical
background which is relevant for the proposed problem and
above all for the determination of the moment, in the
development of the algebra curriculum where experimental
observation will take place.

Second.- Concrete Modelling in a transition moment.
The moment of observation is described, from the point

of view of previous teaching, and also the population from
which subjects are taken to perform the case studies that
conform the clinical part of the study: This population is
classified according to their previous abilities and
knowledge, and an argument is advanced on why, for the study
we describe here, work is done with subjects in the class
called "higher stratum".

Third. -. Abstraction processes of the operations, from the
use of a concrete model to learn how to operate the unknown.

The description here, initiates with the performance of
the subjects observed, after an instruction phase aimed at
the operation of the unknown, based on the modelling of the
equations in "concrete" contexts. A brief description is
made of empirical results obtained, in order to have some
referents that permit us to make a description of the
interaction processes between the semantic and the syntactic
aspects that become present in the acquisition of the early
elements of algebraic. language.

Fourth.- Algebraic semantics versus algebraic syntax.
Confronted here are two canonic subject's attitudes in

the learning and use of mathematics, which possess specific
characteristics in the case described: the application of
the same 'model to operate the unknown. Two contrasting
cases have been selected: one totally learning towards a
syntactic attitude, and the other one being purely semantic.
Fifth.- Modelling and the Teaching of Algebra.
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An analysis is made of concrete modelling as a teaching

strategy for algebra. It is observed that its strengths

sometimes become weakness, when such modelling is framed, as

is done there, in the context just described: the operation

of the unknown and the generation of some of the usual

syntactic errors.

The results obtained in that part of the work allow us

to assert that the rectification of algebraic syntax errors

and of the operational vicissitudes which become present in

the middle of complex processes of resolution of problems or

equations, which are generated during the learning of

algebra, cannot be left to the spontaneity with which

children make use of the first elements with which they are

provided to make incursions into the terrain of algebra,

because the paths marked by such spontaneous developments do

not go in the direction of what algebra intends to achieve;

this is precisely the reason why such a rectification is a

task for education. Therefore, if we are trying to

introduce certain algebraic notions by means of models

(including the syntactic model) it would be convenient to

bear in mind which are some of the main components of

modelling.

Modelling has two fundamental components. One of them

is translation, by means of which new objects and operations

being introduced, and which appear in abstract situations,

are endowed with meanings and senses in a more 'concrete'

context; in other words, through translation; such objects

and operations are related to elements pertaining to a

'concrete' situation; the latter is a state of things

representing, in turn, another state of things in the more

abstract situation (in the case of the geometric model,

equality between areas or magnitudes corresponds to an

equality between algebraic expressions); thus, starting from

what is already known at the more 'concrete' level, about

the resolution of such situations, operations are introduced

which, even if performed on the 'concrete', are also
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intended to be done on the objects pertaining to the more
abstract level; for this reason, a two-way translation
becomes necessary from one context to the other, in order to
make it possible to identify each operation in the more
abstract level with the corresponding operation in the
'concrete' model.

A second component of modelling is the separation of
the new objects and operations from the more 'concrete'
meanings which were introduced, i.e., modelling also tries
to do what Mt. (the case of syntactic tendency mentioned in
section IV) attempts from the beginning, namely, to detach
herself from the semantics of the 'concrete' model, since,
ultimately, what we seek to achieve is not to solve a
situation which we already know can be solved, but to find
the ways of solving more abstract situations by means of
more abstract operations. This second component is one of
the driving principles which guides the function of
modelling towards the construction of an extra-model syntax.

These studies which we are reviewing here shows that
mastery of the first components of modelling (translation)
can waken or inhibit the second one; such is the case with
subjects who, achieve a good handling of the 'concrete'
model, but who, because of this very fact, also develop a
tendency to stay and to progress within that context. This
fixation on the model runs against the other component, that
of abstraction of the operations towards a syntactic level,
which would presuppose a breaking away from the semantics of
the 'concrete' model.

What we are remarking on the interaction between the
two basic components in cases of a syntactic tendency,
obstructions are generated during the processes of
abbreviation of the actions and while producing intermediate
codes (intermediate between the algebraic concrete situation
and the algebraic syntax level); these are obstructions to
the processes of abstraction of the operations effected on
the 'concrete' model, and they are due to a lack, at this
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transition period, of adequate ways to represent the results

or the states to which operations lead. Once more, this is

a shortcoming in the second component of the modelling

action.
The obstructions just pointed out constitute a sort of

essential insufficiency, in the sense that modelling (when

left to the spontaneous development on the part of the

child), upon being strengthened in one of its components,

tends to hide precisely that which, essentially is attempted

to be taught, namely, new concepts and operations.

This sort of dialectics between the processes belonging

to the two modelling components should be taken into

consideration by teaching, and an attempt ought to be made

at a harmonious development of both types of processes, in

such a way that they do not obstruct one another. From the

analysis of the cases presented here, it is indeed clear

that this is a task for education, given the fact that the

second aspect of modelling: the breaking away from previous

notions and operations, on which the introduction of new

knowledge finds support- is a process consisting in the

negation of parts of the model semantics; these partial

negations take place during the transference of the use of

the model,

case of the

application

from one
geometric model, this is a

from one equation mode to

problem situation

this generalization in the use of the

spontaneous development on the part

to another (in the

transference of its

another); but when

model is left to a

of the child, the

partial negation can happen in essential parts

(in the geometric model, the presence and the

the unknown are negated); for this reason, the

of the model

operation of

intervention

of teaching becomes necessary in the development of these

processes of detachment from, and negation of the model, in

order to guide them towards the construction of the new

notions.
The transference of the problem situation, semantics

versus algebraic syntax, to a level of actions in modelling,
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permits the closing of gaps between teaching and such a
problem situation, since, through the analysis of this
interaction at this new level, didactics phenomena come to
light which point out as necessary the intervention of
teaching at key moments of the processes which are unchained
during the initial stages of algebraic language acquisition.

BRIEF DESCRIPTION OF THEORETICAL FRAMEWORK OF THE MEXICAN
TEAM-

The stability of the observed phenomen'a and the well-
established replicability offthe experimental designs that
were used in our studies confronted us with the need to
propose a theoretical component to deal with different types
of algebra teaching models for the teaching-learning
processes together with (2) models for the cognitive
processes involved, both of which are related to (3) formal
competence models to simulate the competent performance of
an ideal user of elementary algebraic language.

It was necessary to concentrate on local theoretical
models appropriate to specific phenomena, which were
nevertheless able to take account of all of these
components; we also proposed ad hoc experimental designs to
throw light on the interrationships and oppositions arising
during the development of all the processes relevant to each
of these three components.

Mathematical,sign Systems.

We needed a sufficiently broad concept of mathematical
sign systems (henceforward referred to as MSS) and a notion
of sign meaning that embraces both the formal mathematical
meaning and the pragmatic one.

We also needed a concept of MSS that was efficient
enough to'deal with a theory of MSS-production in which we
would be working with intermediate sign-systems used by the
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learner in the learning/teaching process, during which the

subject would have to rectify the use of these intermediate

MSS so that, at the end of the teaching process, the student

becomes competent, which is the educational goal of any

teaching model.

These local theoretical explanatory models have to deal

with at least four types of sources of meaning (see Kaput J.

(3)):

1. By transformation within a particular MSS without

reference to another MSS.

2. By translations across MSS.

3. By translations between MSS and non-mathematical

sign systems, such as natural language, visual images and

the behavioural signal-systems used by the subjects during

the learning/teaching processes that permit us to observe

the learner's cognitive processes a

psychological results propose

"mathematical didactics" analysis

involved in the experimental design

model under study.

4. With the consolidation, simplification,

lization and reification

of the intermediate MSS

nd on the basis of these

ew hypotheses for a

of the teaching models

of the local theoretical

genera-

of actions, procedures and concepts

created during development of the

teaching sequences proposed by the teaching model component

of the theoretical local model under study, these

intermediate MSS evolve into a new "more abstract" MSS in

which there will be new actions, procedures and concepts

that will have as referents all the relevant actions,

procedures and concepts of the intermediate MSS for their

use in new signification processes. If the goals of the

teaching model are achieved, the new stage has a higher

level of organization and represents a corresponding new

stage in the cognitive development of the learner.

Wile the first three sources of sign-functors

(translations, following Kaput's terminology) represent

means of dealing with primitive expressions and means of
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combining them, the fourth represents means of abstraction,
by which compound objects can be named and manipulated as
units and afterwards used in signification processes to
solve the new problem-solving situations proposed to the
learner in the teaching sequences of the teaching model
theoretical component. If, as is the case, we haveto work
with mathematical learning/teaching processes, there is no
way to avoid having these means of abstraction as our main
focus of observation and we need a theory of MSS-production
in which an abstraction-functor relates the different
intermediate MSS .(used during the development of the
teaching sequences) with the final moreabstract MSS (the
goal of the teaching model under study). Later on, a
mathematical didactic analysis could interpret this
psychological evidence to propose related hypotheses to be
observed by its own methodological means.

There is a MSS.(with its corresponding code) when there
is a socially conventionalized possibility of generating
sign-functions (through the use of a sign-functor), whether
the domains of such functions are discrete units called
mathematical signs, or vast portions of discourse (which we
will call mathematical texts) in which a mixed concatenation
of signs is produced using signs coming from different sign-
systems (including natural language ones and the learner's
personal signal-systems mentioned above), provided that the
functional correlation has been previously posited by a
social convention, even, in the cases in. which it is
ephemeral as in the case of the didactic signal-systems
appearing during the intermediate steps of the teaching
sequences of certain teaching models (balances, piles of
rocks, spreadsheets, Logo environments, diagrams etc).
There is, on the contrary, a communication process when the
possibilities provided by a MSS are used in order physically
to produce expressions for many practical purposes.
These performing processes require signification processes,
the rules of which (the discursive competence) have to be
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taken into account by the theoretical cognitive part of the

production of mathematical signs only insofar as they have

already been coded because, as we have already mentioned, we

are interested in observations in which new knowledge is

acquired by the user with the expansion of those

intermediate mathematical signification systems to new ones

which embody them.

Stratified MSS and teaching models

What we use in order to think mathematically and to

communicate our thoughts to others is a collection of

stratified MSS with interrelated codes that allow the

production of texts the decoding of which will have to refer

to several of those strata; the elaboration of the text will

use actions, procedures and concepts whose properties are

described in some of the strata.

Two texts T and T', both produced with a set of

stratified MSS L will be called transversal if the user

cannot elaborate T as in the decoding of T' - that is, if T

is not reducible to T' with the use of L. Usually what

happens is that the learner can elaborate T and T', but

cannot recognize the two decodifications as a product of the

use of the same actions, procedures and concepts of the

different stratum of L.

If we now have another stratified MSS M in which T and

T' can be decoded and the elaboration of both can be de-

scribed through the same actions, procedures and concepts in

M, the meaning of which has as referents the actions, proce-

dures and concepts used in the decoding of T and T' in L,

then we will say that M is a more abstract stratified MSS

than L for T and T'.

To accomplish this, the actions, procedures and con-

cepts; used in M have lost part of their semantic-pragmatic

meaning" they are more abstract.
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This brief description of how we can define the ab-
straction-functor allows us to give a preliminary definition

of a Teaching Model as a set of sequences of mathematical
texts Tn, the elaboration and decodification of which by the
learner enables him at the end to interpret all of the texts
Tn in a more abstract MSS F, whose code makes it possible to
physically produce the texts Tn as messages with a socially

well-established mathematical code, as was presupposed by
the educational goals of the Teaching Model.

The analysis of how these processes of decodification

to the sequence of texts Tn are better accomplished by the
learner to become a competent user of the MSS F (as de-
scribed in the formal competent model component) is part of
a mathematical didactics study of the Teaching Model, which
will have to take into account the cognitive processes de-
scribed through the cognitive model component of the local
theoretical model under a PME study.

RESULTS OF RECENT RESEARCH INTO PROBLEMS OF LEARNING ALGEBRA
USED AS THE CORE FOR IN-SERVICE COURSES IN THE TEACHING OF
MATHEMATICS,

In Mexico the need to apply a theoretical approach to
the problem of teaching mathematics began to become evident
towards the middle of this century. From the outset, this
new awareness attracted the attention of groups of mathe-
maticians, educators, psychologists and epistemologists,
giving and impetus to new study programmes at all levels of
the educational system. This activity resulted in many ar-
eas of enquiry being thrown up which had not previously been
studied and which posed awkward problems.

Changes in mathematics curricula made it essential for
teachers to have knowledge that was in accordance with the
new ideas on mathematics teaching. There was also a need
for researchers in the field.
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The mathematics teaching section of the IPN's Research

and Advanced Studies Center (Centro de Investiciacion y de

Estudios ANPanzados) has been training people to master's and

doctoral degree level in the field of Mathematics Teaching

since its formation in 1975. Four years later, it started

the National Programme to train Researchers in Mathematical

Education for the state universities, with the Ministry of

Education, through the Directorate General of Scientific Re-

search and Academic Achievement, part of the Sub-Ministry of

Education and Scientific Research (Subsecretaria de Educa-

ciOn e Investigacion Cientifica. SESIC).

The training of research personnel has made it possible

to set up Centers of Research and Teaching in Mathematics

and academic units (known collectively as REGIONAL NODES) in

a number of universities.

The National Mathematics Teacher Training and Further

Education Programme (NMTTFEP) started in 1984 with the sup-

port of SESIC through the University Academic Units Network

made up of 16 state universities and 10 regional Technology

Centers.

The national Mathematics Teacher training and further

education Programme (NMTTFEP)

Aims

Promote interaction between groups of experts and

researchers on the one hand, and practicing teachers on the

other, in order to:

Propouse curriculum changes

- Produce new teaching materials

- Design or implement evaluation techniques to assess the

performance of the school system.

- Provide external support to the teacher in the classroom.
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- Propouse alternative solutions to mathematics teaching

and learning problems.

- Train educators with the capacity to develop a fresh
approach in schools.

Curriculum Organization

The curriculum is divided into three complete phases,
completion of each phase entitling the participant to
receive a diploma. The phases are:

I. Training phase:

The course content in this phase is basically the same
as that of the courses given by the teacher at the, level at
which he or she will be working. The aim is ,that the
teacher should be fully acquainted with the mathematics.he
or she will be teaching. Subjects covered will be Algebra
I, Trigonometry, Analytical Geometry, Euclidean Geometry,
Differential Calculus, Equations and Matrices systems,
Graphically expressed functions, Integral Calculus,
Probability and Statistics.

II. Further mathematics training phase:
The aim of the courses in this phase is that the

teacher should increase his mathematical knowledge beyond
the level to which he teaches, in order to enrich his
teaching work and, where appropriate, enable him to tailor
courses and lessons to the place and conditions in which he
is working. Nine subjects are dealt with in this phase: Set
Theory, Modern Geometry, Mathematical Proof, Vectors and
Spatial Analytical Geometry, Algebra II, Linear Algebra,
Computing, Advanced Calculus and one of the following
options: Computation and Numerical Methods or Probability
and Statistics. The Advanced Calculus course also consists
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of two options: Introduction to Analysis and Vectorial

Calculus.

Further teacher training (subject related):

The content of these courses provides the teacher -pupil

with the basis necessary to have a better understanding of

the mathematics teaching and learning process, and also to

interact with colleagues as well as experts and researchers

in the educational field in order to produce new

technological resources and new knowledge to improve

teaching. The subjects in this phase are Conceptual

Development of the Calculus, Algebraic Conceptual

Development, Basic History of Geometry, Didactic Theory of

the Calculus, Didactic Aspects of Proof, Psychology of

Mathematics Teaching, Errors in Algebraic Syntax, New

Teaching Methods: Audiovisual workshop, the teaching of

Algebra, the 6omputer in Mathematics teaching and

Evaluation.

Research in Mathematics Teaching and Mathematics Teacher

Training.

In the further teacher training phase two types of

course may be distinguished:

A. Courses whose main purpose is to provide the

teacher-pupil with elements of theory which will

help them to increase their understanding of the

mathematics teaching learning process.

B. Courses whose main purpose is to enable the

teacher-pupil to intermingle with experts and

researchers in the education field in order to do

research to obtain new technological resources and

new knowledge leading to the transformation of the

country's education system.
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Description of two courses for teachers based on recent
research on the teaching of Algebra

Example of a Type A course

The "Teaching of Algebra" course was held between May
and July of 1987 at the School of Mathematics at the
Universidad Autonoma de Yucatan, as part of the further
teacher training phase organized by the NMTTFEP. This was a
"Type A" course.

Those taking the course are teachers of mathematics at
upper middle and upper levels in the states of Yucatan and
Campeche working in technical universities of government
schools. The course was divided into twelve weekly
sessions, each lasting approximately two hours, with the
teachers participating actively through workshops and
activities to encourage the exchange of experiences and
ideas and thus further enriching the course.

The following topics were studied:

i. General survey of the problems of teaching algebra.

ii. Syntax errors.

iii. Solving methods and remedial teaching.

iv. Problem solving.

The plan of the course shows the activities and
evaluations carried out in each session and the work done by
teachers between sessions. The course was designed in such
a way as to provide teachers, before the session, with
material and related reading schemes which would, provide a
conceptual basis for the topic to be studied and would be
helpful in the discussion and in reaching conclusions.

Workshops were also held in error classification, where
teachers had the opportunity to exchange experiences and to
comment on the research findings related to the teaching of
algebra from other parts of the world, such as the studies

BEST COPY AVAILABLE 77
PII.27



by Matz and Booth carried out in the United Stated and

England respectively.

THE NEED FOR NEW CURRICULAR MATERIALS FOR WORKING WITH

TEACHERS OF MATHEMATICS

Our presentation has shown one way in which the results

of research into the teaching of Mathematics are being used

in Mexico to bring about change in the 'country's education

system, namely, by means of courses within a teacher

training program (NMTTFEP) based on the discussion and

reproduction of certain recent experiments in the field of

research, the case illustrated here being the teaching of

algebra. Next, a brief presentation was made of the type of

theoretical' framework used by the course designers (E.

Filloy, M. May, E. Peraza, T. Rojano and M. Trujillo) to

carry out their own research work (see the Proceedings of

the Psychology of Mathematics Education Group for the last

five years, where a description of it can be found (4)).

This was done to contrast the theoretical framework

with theoretical references used when working directly with

teachers on the courses we have described, which are of a

very different nature. These courses are based on the

discussion of work carried out by other teams; their

explicitly stated theoretical viewpoints are studied with

the teachers taking the course, as are the implications of

the way problems are stated, the design of the experiments,

and the way they were set up, on which the manner in which

the data was processed is included as evidence. A study is

made, jointly with the teachers, of the results that appear

to be most important for them in their day-to-day teaching.

We have tried to make clear that, in our work with teachers,

there is a need to develop special new curricular materials

to introduce new problem areas being brought out by research

in mathematics education all over the world, as well as new
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methods of understanding these problems, novel ways of

setting up experiments, experimental technique, the use of

new methods of processing information, etc. These courses

start from the assumption that it is possible to discuss

recent research results with practicing teachers in the
Mexican education system and, therefore, to develop special

materials incorporating theoretical insights derived from

areas of knowledge very far removed from what the teacher

has hitherto had access to (cognitive psychology, artificial

intelligence, psycholinguistics, mathematical didactic
theory , to give some examples); the description given here

of.the theoretical framework used by the Mexican team to
design, interpret and correct its experiments is very

closely linked with a conception of algebra as a MSS (as

described above).

From these courses, not only can an accurate view of
teachers' opinions on the problems being considered be

obtained, but a new area of discussion can be proposed to

them, where prejudices rooted in years and years of teaching

cease to be evident, at least to start with. The whole

conception of discussion with teachers (the real backbone of

the courses) is based on stating "facts" which are not know

to the teachers and only recently published. This enables

teaching problems to be considered from angles which are

completely new to them. Working together with researchers
becomes a collective activity which is not hindered by
prejudices formed as a result of past practice, but proceeds

as an innovative effort by all concerned, namely, teachers

and researchers. From the experimental results, the teams

so formed put forward new curricular ideas to be used by all

teachers in the Mexican educational system. Meanwhile, all

the time new hipotheses are emerging, which will serve as

the basis for further joint activities.

In conclusion, to use the very suggestive and plentiful

theoretical and empirical research findigs all over the
world, new curricular designs need to be developed to enable
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a branch of knowledge which aspires to be intricately

interwoven with other fields derived from linguistics,

psychology, history, epistemology,. etc., to be transposed

into a language and practice which are as well-expressed as

possible in terms of the everyday discourse used by teachers

working in our existing educational systems.
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Some Misconceptions In Calculus - Anecdotes or the Tip of an Iceberg?

Miriam Amit, Shlomo Vinner,

Ben-Gurlon University, Hebrew University,

Beer-Sheva, Israel. Jerusalem, Israel

Several recent papers have argued that many students who passed a university calculus
course have poor conceptual knowledge of the course. This is a general claim which does not
explain where the problem is. In order to be more specific, a detailed analysis of students ideas isneeded. In this paper we analysed the answers of one student to two questions, posed to him ina questionnaire. It can be considered as a one questionnaire case study". The analysis shows
that in spite of the fact that some elements in the student's answers indicate a good conceptual
understanding, there are other elements which indicate a very serious misconception. It seems
that this misconception implicitly directs the student's line of thought when he tries to solve a
non-routine conceptual problem. On the other hand, the correct ideas appear when the studentis asked the routine questions either conceptual or computational.

In recent years. it has been discussed that teaching and learning mathematics became

procedural and not conceptual. Namely, both students and teachers put the emphasis on

procedures and avoid concepts. A lot can be said about the causes of this phenomena. There

are psychological causes, educational causes, social causes and even political causes. We

cannot deal with all these here.

The aim of this paper is to draw more attention to the above phenomena in the domain of

calculus. It is not enough to know about it In general, exactly as it is not enough for the ecologist

to know in general that disposal of toxic materials in the river harm the fish. The more specific our

knowledge about it is, the greater our chances are to change the situation. Since sophisticated

calculators today can execute symbolic manipulations on functions and also draw their graphs,

there is no point In teaching and learning how to do it unless conceptual understanding Is

involved. It is a waste of time and energy to train somebody to do something that a machine can

easily do. If some aspects of calculus are important at all to somebody who does not major in

mathematics these are the conceptual aspects. The concept of the derivative is especially

important. If this concept is not well understood then its relation to velocity, rate of change, etc.

cannot be understood in natural sciences and its relation to marginal value concepts cannot be

understood in economics and business administration. There are already some studies which

Indicate how poorly calculus students perform on conceptual tasks. Orton (1983) reported that
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most errors students made when carrying out some tasks in differential calculus were the result of

the failure to grasp conceptual principles which were essential to the solution. Tufte (1988)

found that the success percentage in technical calculus items was between 73 and 92 whereas

the success percentage in calculus conceptual items was between 7 and 22. Selden (1989) who

administered a non-routine conceptual calculus test to students who passed a routine calculus

test with grade C, reports that the highest score gained in this test was 35%. Vinner (1989)

reports that in high school graduates, who had completed a calculus course and passed

matriculation exams with grade not less than 80%, only 24% knew the geometric interpretation

of the derivative and 7% knew the algebraic Interpretation of the derivative (the derivative as a

limit). Note that the last aspect is the one that really counts in natural science. In this paper,

however, we are not interested in statistics. We are interested In the Ideas students have about

calculus concepts related to the derivative.

There are two common methods to reveal students'. ideas: a questionnaire and an

interview. The common belief is that an interview is a better instrument than thequestionnaire.

This is because many ambiguities can be resolved in an interview that cannot be resolved in a

questionnaire. Also, some spontaneous reactions in an interview can be extremely illuminating ,

much more than the controlled or even inhibited reactions one can get in a questionnaire. This

might be true in many cases but there are also many cases in which the situation is more delicate.

Assume that a student makes an ambiguous statement in an interview and the interviewer wants

to ask a question which is supposed to clarify this ambiguity. Of course, this must be done in

such a way that the student will not change his mind as a result of the question posed to him.

Practically, however, this might be impossible. There are situations in which any reconsideration

of a given answer causes a critical analysis. This analysis wit lead to a clarification in a direction

different from the one in the original answer. Everybody with minimal self awareness knows that

very often he has vague ideas which he believes in, but the moment he formulates them in words

or even listens to somebody else's formulation he realizes that these were faulty ideas. So, there

are cases in which an interview will not lead to clear and unambiguous information but even to

distorted information. Also the belief that in an interview we can obtain more spontaneous
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reactions is not necessarily true. It depends on the student and on the interviewer and on the

relations between them formed before and during the Interview.

Thus, in this study of calculus misconceptions, we decided to use questionnaires and to

analyse them in a very detailed way. A satisfactory analysis should be a coherent (not necessarily

consistent) interpretation of the student's answers. In order to form such an interpretation it was

necessary sometimes to use speculations. This might be considered as negative by some

people and our answer to such criticism raises two issues:

1. It is impossible to make progress without making some speculations. The speculations should

be examined, of course, by experimental data, but this is a long process and it is not a one study

project. We ourselves are planning to examine these speculations in the next stage of our

research and we hope that other mathematics educators, specializing in calculus, will also examine

them and either support or refute them.

2. Athough we declare our hypotheses as speculations these are not at all detached from

practice. They have strong support In our experience as calculus teachers. Many reactions of

students in our calculus classes and office hours strongly support our interpretations of the

questionnaire. Some readers might consider this as anecdotal information. We believe that It is

symptomatic and it is only the tip of an iceberg.

Method

Two Questions and One Student

Out of a questionnaire that contained eleven questions we selected the following two questions

to discuss here. (Questions 1A and 1B are taken from Tutte, 1988).

1. Line L is tangent to the graph

of y = f(x) at point (5.3).

A. Find f (5)

B. Find f' (5)

C. What is the value of the function f(x)

at x = 5.08 (be as accurate as possible)
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2. A. What is a derivative? Define or explain as you wish.

B. What does it mean that the derivative of f ( x ) = x2 is 2 x ?

C. Using only a calculator, can you suggest a method to calculate an

approximate value of the derivative of 4x at x = 2 ?

Please explain and justify every step in your solution.

The student, whose answers will be analysed here, is a first year economics student at

Ben-Gurion University who took a calculus course both in high school and at the university. The

questionnaire was administered to him, as well as to another 130 students, at the end of the

university calculus course. Because of confidentiality, we changed the student's name and

called him Ron.

Results
Ron's answers and explanations are the following (this is a literal translation from Hebrew):

1A. The value of the function at 5 is 3. Explanation: (5.3) is the tangency point.

18. Ay 3-1 2
=lga

ex 5-0 5

Explanation: The derivative at x = 5 is the slope of the tangent to the function y = f (x) at

this point.
2

1C. y - yo = 5 ( x - xo)

2
y-3 =

5
(x-5)

Y 3

Y=

2= x-2
5

2
x + 1 This is the equation of the tangent at (5.3).

5

Now we will find the integral (a primitive function)

2 (2/5 ) X2 1

F (x) J ( X +1) dx + x + C = x2 + x
5 2 5

f(xo+Ax) = f(x0) + f'(x0)6.x
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1 , 2

51(5+0.08) = 54 5 +(
5
5+1).0.08

Explanation: Using the slope of the tangent we found the tangent equation at (5.3). By means of

this we found the integral (the primitive function) and by means of linear approximation (part of

Taylor), first order approximation we found an approximation to the value of the function at x=5.08.

2A. The derivative is the slope of the tangent to the graph at a certain point. This is the

derivative at a certain point. Generally speaking, it is the slope of the tangent to the graph (the

tangent of the angle of the slope).

2B. It means that the slope of the tangent to the function x2 is 2x. For Instance at x = 2,

y = 4 the slope of the tangent is y' = 22 = 4.

2C. Hal

h

4x +h 4X 4x 4h etx 16. 4h - 16
= am lim

h -40 h h -4

Explanation: y = ax, y = ax In a, 4X. y' 4X In a

h

Analysts

Al first sight, it we ignore 1C which looks quite strange, Ron's answers are almost alright. There

are some minor deficiencies: First of all, the explanations in 1A and in 2C are completely irrelevant.

They have nothing to do with theanswer. Most teachers tend to Ignore this phenomenon as long as the

answer is correct. When marking exams It is almost forgivable. Since we are not involved here with

evaluation we would like to point out the phenomenon. Many students do not understand the nature of

mathematical explanation. They point at a certain relation between their answer and another factbut they
. I. 111. I. , Oil I. H . I . .1 . We will call this an

irrelevant explanation, Secondly, there are some formulation deficiencies in Ron's answers. These are

even more forgivable by teachers than the previous deficiency.

If you read 2A carefully you might be bothered by the use of the definite article: "the slope of

the tangent to the graph at a certain point". This can be understood as if you choose a certain point and

then define the derivative as the slope of the tangent to the graph at this point. Ronprobably was aware

of this interpretation and he bothers to tell us that it is not the correct one. This is by saying that "this is
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the derivative at a certain point". Namely, the point varies, it is not a fixed one. Thus, consciously, the idea

is very clear and the answers to 2B and 2C support the impression that Ron's concept of the derivative

is satisfactory. But what happened in 1C is an example of unconscious (or implicit ) influence of ideas

that when expressed explicitly are immediately recognized as wrong. We refer here to the above

mentioned idea that the derivative is the slope of the tangent at acertain (fixed) point. When the concept

of the derivative is explained to the student there is a typical drawing shown to him, similar to the drawing in

question 1. Since there is a well known tendency in cognition that pictures replace the concepts, and In

the picture only one tangent is drawn, this tangent might replace the derivative. The derivative will be

considered as the equation of this tangent, This idea was expressed explicitly by several students on

different occasions in classes, in office hours and in our questionnaire. Is it possible that this wrong idea,

in spite of Ron's explicit intention, will direct his behavior in 1C? Note that if we ignore 1C, Ron would

be considered as somebody who understood the concept of the derivative in a quite satisfactory way.

Let us now analyse Ron's answer to 1C. In this answer the required formula to calculate f(5.08)

appears quite close to the end. This is the formula f (x0 + Az) = f (x0) + f' (x0) Ax (the only mistake is

a notational one ; it should be "=" instead of "="). In 1A and 1B Ron calculated 1(x0) and f' (x0),

so he could use the above formula right away. Why didn't he substitute these In the formula and find an

approximation for f (5.08)? Instead Ron calculated the equation of the tangent at (5.3) and got

2
y =

5
x + 1. This equation is treated now as if it were the derivative of the given function.

Therefore, in order to find the given function one should look for the integral of the above derivative.

Thus Ron writes, using the common letter F to denote a primitive function:

F (x) = 5( 2 x + 1) dx. The answer 1 x2 + x + c brings up a certain difficulty, namely, the

5 5

integration constant c. This is simply resolved by ignoring it (or substituting c = 0). Also this is

a typical phenomenon: I 1 I: .1 I. ii .1

According to the original plan possible. At this point the notational conflict should be resolved.

On one hand, Ron uses F(x) to denote the primitive function. The use of a capital letter is

common in this context. On the other hand, the question speaks about f(x), therefore he

returns to f (small letter). In this 1, Ron substitutes 5 for x0 and gets
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(1 /5) 52 + 5. In addition to this, f (x) is now x + 1 and therefore f' (5)

2
is 5 + 1, in conflict with the answer in 1B.

5

Thus, unintentionally, in spite of what was said in 2A, the derivative has become the equation of

the tangent at a certain fixed point and the function itself is the integral of the equation of the

tangent. The contradiction between 2A and 1C can be explained by compartmentalization.

The fact that it happened this way can be explained by the existence in a suppressed form of

the above misconception of the derivative. Apparently, Ron's line of thought was also directed

by additional implicit ideas:

1. in order to evaluate the value of a function at a certain point one should know the

function in terms of algebraic formula,

2. The above formula can be obtained if we have a formula for the derivative

To these two principles a previous principle was added :

3. The formula of the derivative is the equation of the tangent (and if this is the case you

must restrict yourself to one fixed point).

We hope that it is clear now that by an interview we would not have been able to clarify the conflict

in Ron's thought. Explicitly, Ron knows the definition of the derivative. Any direct question about

the derivative asked at the context of 1C will lead to an answer similar to 2A. Thus without the

above speculation it Is impossible to explain what happened in 1C. As a part of an interview it

might be considered as a meaningless accident caused by temporary confusion and not as

evidence of a certain implicit common misconception. In an interview we would even be

impressed by the technical terms used by the student: "Linear approximation" and "Taylor".

Technical terms are always a trap for teachers and students know it very well. Technical terms are

considered by teachers to be an indication of understanding. If one uses the right term can he

have a wrong idea?

The above misconception can be explained even by a lingual analysis. The exact

geometrical definition of the derivative is the following: The derivative of a function at a certain

point is the slope of the tangent to the graph of the function at this Point. It is quite hard to

memorize and therefore some omission transformations take place. The first one is harmless.
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You say "the derivative" instead of "the derivative of a function". The second one is

dangerous. You say ls the tangent' Instead of is the slope of the tangent". The third one is

based on the convention that there is no need to distinguish between the function and its graph.

Every mathematician can tell you from the context whether one refers to the function as an

algebraic entity or to its graph, the geometrical entity. Thus, you say "tangent to the function"

instead of "tangent to the graph of the function". The fourth omission Is in the beginning of the

definition. Instead of saying "the derivative at a certain point" you simply say "the derivative".

Therefore, because of grammatical reasons when you reach the word "this" at the end of the

definition you must use an Indefinite article and make it "a point" , or even better "a certain

point", which echoes the expression omitted earlier. Hence, the final result of all the above

changes Is: The derivative is the tangent to the function at a certain point. This is a definition we

got in many questionnaires and faced in many classes. Now, there are two possibilities: 1. The

above formulation is used only to facilitate memorization and it serves the student to reconstruct

the complete original definition. 2. The above formulation becomes the definition itself. In

addition there is the above convention that when saying 'tangent" you can refer either to the

geometrical entity or to the algebraic entity - the equation of the tangent. Therefore, from these

one can imply that the equation of the tangent at a certain point Is the derivative. This "certain

point" which already has the connotation of a fixed point, when associated with the prototype

drawing of the derivative (something like we had in question 1) leads to the above misconception

which has been found, as mentioned before, In many students. This misconception does not

prevent students from passing, the university calculus course, sometimes even with good marks.
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DIFFICULTES COGNITIVES ET DIDACTIQUES DANS LA CONSTRUCTION DE

RELATIONS ENTRE CADRE ALGEBRIQUE ET CADRE GRAPHIQUE

Michele Artigue , IREM, Universite Paris 7

Abstract : In this paper. starting from results obtained in a research on the teaching and
learning of differential equations with beginners, we analyse cognitive and didactical
difficulties linked to the building of relations between the algebraic setting and the graphical
one, for the notion of function. This analyse tends to show that persistent difficulties are
mainly concentrated in the interaction needed at level of proofs and that. at this level,
cognitive difficulties are reinforced by didactical ones.
The presentation will be given in english.

I - INTRODUCTION
Les notions mathernatiques fonctionnent generalement dans plusieurs cadres et une

des caracteristiques de l'activite du mathernaticien est le jeu qu'il opere entre ces differents

cadres pour resoudre les problemes qu'il se pose ou lui sont poses. D'un point de vue cognitif

egalement, comme R.Douady l'a montrb dans sa these (Douady, 1984), les-desequilibres entre

connaissances et convictions issues de cadres differents sont des leviers sur lesquels le

didacticien peut jouer efficacement, dans une perspective constructiviste de l'apprentissage.

C'est dans cette perspective theorique que je me situerai dans cet article, a propos de la

notion de fonction.

Depuis une dizaine d'annees les recherches se sont multiplites a propos de cette
notion, mettant en evidence les differents niveaux de conceptualisation qui marquent son
apprentissage et les difficultes rencontrees par l'enseignement usuel, centre sur les aspects

algebrique et ensembliste (Dreyfus, Vinner, 1982), (Dubinsky, 1989), (Sfard, 1989).

La plupart des chercheurs ont d'autre part elabore et experiments des strategies

d'enseignement visant a surmonter ces difficultes. Un certain nombre de ces strategies sont

basses sur l'exploitation des possibilites offertes par l'outil informatique pour mettre en
connexion etroite differents cadres de fonctionnement de la notion, en particulier les cadres

algebrique - ou la fonction intervient par l'intermediaire d'une ou plusieurs formules -
numerique - oil elle intervient par l'intermodiaire de tableaux de valeurs numeriques - et

graphique - oil elle intervient par l'intermediaire d'une representation graphique, et ceci que

les chercheurs se referent explicitement ou non a la theorie des jeux de cadres (Dreyfus,

Eisenberg, 1987), (Guzman-Retamal, 1989).

Ces experiences dont les resultats sont le plus souvent midges ne peuvent manquer de

susciter diverses questions :

- Quel role peut jouer l'etablissement de relations entre les divers cadres de fonctionnement

de cette notion dans sa conceptualisation ?

- Quelle est la nature exacte des difficultes rencontrees dans l'etablissement de ces relations ?

En particulier, quel est le poids respectif dans ces difficultes de la composante cognitive et

de la composante didactique ? Comment ces composantes s'imbriquent-elles et pourquoi ?
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Je me restreindrai ici a ce deuxieme groupe de questions. El les paraissent essentielles
pour comprendre le fonctionnement de l'enseignement et analyser toute tentative
d'intervention. El les sont a rapprocher des questions que pose actuellement en didactique la
theorie des obstacles episternologiques (Artigue, 1988). L'analyse des travaux merits en ce
domaine montre en effet que, le plus souvent, ce qui est identifie par les chercheurs comme

obstacle epistomologique, par reference au developpement historique des notions considerees,

se retrouve etroitement imbrique dans l'enseignement a des obstacles de nature didactique.
L'enseignement usuel vit sur la fiction de la possibilite d'un apprentissage dans la continuito :

le bon enseignant est celui qui permet a reeve d'eviter les difficultes, qui previent les

erreurs, qui aplanit l'apprentissage pour en faire un processus graduel et sans ruptures. Ceci
conduit, consciemment ou non, a des prises de decision didactique qui, dans leur volonta de
contouner les ruptures inevitables, renforcent au contraire, les obstacles epistemologiques par
ce que I'on peut identifier comme des obstacles didactiques.

Ceci peut conduire a faire l'hypothese de mecanismes analogues dans la construction

des relations inter-cadres au niveau de l'enseignement. Est-ce-que la separation des cadres,
souvent presente dans l'enseignement usuel, est une reponse didactique a des difficultes
cognitives reelles ? Si oui, ne les renforce-t-elle pas ? Si oui encore, est-ce-que les
experiences menees basees sur retablissement de relations inter-cadres ont reellement reussi a
s'opposer a ces contraintes -didactiques ou ne l'ont-elles fait qu'en surface ? En quoi ce
phenomene pourrait-il expliquer certains des resultats obtenus ?

C'est au &bat sur ces questions que je voudrais contribuer ici, en exploitant dans
cette direction les resultats d'une recherche menee depuis trois ans sur l'enseignement des
equations differentielles en premiere armee d'Universite, avec des etudiants d'orientation
mathematiques /physique.

II - CADRE DE LA RECHERCHE ET METHODOLOGIE

Si la theorie des equations differentielles s'est mathematiquement doveloppee dans
plusieurs cadres, l'enseignement pour debutants se centre sur la resolution algebrique c'est
dire sur la resolution par rintermediaire de formules (formules explicites ou implicites,
developpements en serie, expressions integrales). La recherche mente avait pour objectif
retude des possibilites, des rentree a runiversite, d'extension viable de l'enseignement a la
resolution qualitative, c'est a dire a la caracterisation geornetrique et topologique de
l'ensemble des courbes compatibles en chacun de leurs points avec le champ de tangentes
associe a requation (portrait de phase de ('equation).

Pour retude des questions posees dans l'introduction, cette recherche me semble
presenter diverses caracteristiques interessantes :

- la resolution geomotrique des equations differentielles met en jeu de facon incontournable
les relations entre cadre algebrique et cadre graphique : une equation (objet algebrique) etant
donnee, cette equation se traduit darts le cadre graphique par un champ de tangentes et/ou
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un regionement du plan suivant la croissance ou decroissance des courbes cherchees. La
resolution qualitative consiste ensuite en un va et vient permanent entre equation et traces,

- dans le cadre de la- recherche menee, cette interaction intervient, suivant les activites
proposees aux etudiants, dans des registres et a des niveaux de difficultes tres differents : ce

ne sont pas les memes competences qui sont necessaires pour associer des traces fournis et

des equations, pour interpreter des traces fournis, pour prevoir le portrait de phase d'une
equation ou pour justifier des conjectures,

- dans l'experimentation, l'enseignement des equations differentielles est prepare par un
travail sur courbes et fonctions et l'on peut donc faire l'hypothese que les difficultes
identifiees dans la recherche sont 'tenement des difficultes resistantes dans la construction de

relations inter-cadres,

- la recherche a donne lieu a trois experimentations successives, prenant en compte les feed-

back obtenus pour ajuster le processus d'enseignement d'une armee sur I'autre, elle a
concerne sur trois ans environ 300 etudiants de niveaux varies puisque la troisieme armee, it

s'agissait des etudiants les plus faibles entrant a l'universite, et une dizaine d'enseignants.

En ce qui concerne la methodologie, it s'agit d'une recherche classique d'ingenierie

didactique. Cett donc une recherche basee (apres analyse des contraintes epistemologiques,

cognitives et didactiques pesant sur l'enseignement usuel dans ce domaine), sur la conception

et l'experimentation d'une sequence didactique jouant sur ce systerne de contraintes et la
validation des hypotheses a l'origine de la conception s'effectue essentiellement par
confrontation entre ('analyse a priori du processus d'enseignement construit et les donnees

recueillies au cours ou a l'issue de l'experimentation.

Dans cet article, je ne Presenterai pas cet aspect du travail pour lequel le lecteur peut se
reporter a (Artigue 1989). L'analyse des difficultes se fera en reference aux principaux
registres d'interaction. en jeu dans l'enseignement et, au niveau des donnees quantitatives, on

s'appuiera sur les reponses a des questions representatives extraites des evaluations menees

chaque armee a l'issue de l'enseignement.

HI - INTERACTION DANS DES TACHES D'INTERPRETATION

Ces taches sont presentes dans l'enseignement, dans les premieres situations

d'approche du qualitatif : situations dans lesquelles les etudiants ont a associer des traces de

champs puis des portraits de phase a des equations ainsi que dans les seances de travaux
pratiques sur ordinateur-ou ils ont a produire les portraits de phase de diverses equations et
les analyser.

Le bon fonctionnement des situations d'association, resolues chaque =nee en petits

groupes, sans que I'enseignant ait a intervenir, temoigne de l'accessibilite des relations inter-

cadres en jeu dans ces activites avec des etudiants de ce niveau : Her caracteristiques de
('equation et invariance des courbes solutions par des transformations geometriques simples,

her signe de la derivee et sens de variation des solutions, her zeros de la derivee et petite
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horizontale, limite infinie et pente verticale, lire une pente et reconnaitre des solutions
particulieres. Les seances de travaux pratiques montrent egalement que tres vice la plupart

des 6tudiants sont capables de prendre de la distance par rapport aux traces fournis pour par

exemple lire correctement comme asymptotiques des traces qui visiblement se touchent et

rejeter des traces avec croisement dans le cas ou de tels croisement sont theoriquement
impossibles.

Les difficultes les plus resistantes repertes concernent dans ce registre retude des
branches infinies. En effet, pour ces etudiants debutants, cette etude releve seulement de la

recette algebrique : on cherche Ia limite du rapport f(x)/x, si cette limite existe, on cherche
la limite du rapport f(x)/x - limf(x)/x

Cette conception est inadaptee a retude qualitative des equations diffarentielles oil, la

fonction etant inconnue, c'est en termes de limite de la derivee que l'on aborde retude des

branches infinies. Il y a done necessito d'enrichir en ce seas la conception initiale et de
coordonner les deux points de vue. Ceci est d'autant plus &Heat que la conception "derivee"

peut conduire a des regroupements des cas distincts de ceux de la recette initiale : asymptote

verticale et branche parabolique de direction asymptotique verticale, par exemple. Ceci peut

expliquer la resistance constatee de formulations contradictoires comme celle-ci :

"11 taut savoir si 1( x) a une asymptote verticale ou une branche parabolique quand x tend vers
l'infini.-

Notons cependant que les erreurs de ce type, usuelles chaque annee en debut d'ensei-
gnement, regressent fortement quand la difficulto est prise en compte explicitement dans
l'apprentissage, comme cela a ate le cas ici a partir de la deuxieme annee. .

IV - INTERACTION DANS DES TACHES DE PREVISION

Ce type de ache (une equation diffbrentielle 6tant donnee, prevoir son portrait de
phase) est present dans l'enseignement : deux stances de travaux diriges au moins, un
problome lui sont consacres et it intervient dans l'evaluation finale. Dans ce registre
egalement, la recherche ne met pas en evidence de difficultes fortement resistantes, au moins

lorsque le trace preliminaire a effectuer, pour regioner le plan suivant le signe de y' est d'un

niveau de complexity raisonnable ou lorsque ce trace, eventuellement plus complexe, est

fourni. Les epreuves de revaluation finale montrent, meme en temps limite, un niveau de
reussite raisonnable et la baisse severe du niveau des etudiants, Ia troisieme annee, n'altere
pas les resultats obtenus les annees precedences.

Les tableaux ci-apres le mettent en evidence en presentant les resultats des taches de

regionement et de trace demandees aux trois evaluations finales successives. Les equations
concernees 6taient respectivement :

1) y',..(1/1+x2)2-y2 , la premiere annee, et l'on demandait de tracer sans justification les
courbes-solutions Co, Ci, C2 passant par les points (0,0), (-2,1) et (0,2),
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2) y'=x2+1-y2, la deuxieme smite, et l'on demandait, spas avoir fait reperer la solution
lintaire, de tracer des formes a priori possibles pour les solutions Ci et C2, issues
respectivement des points (0,1/2) et (0,2), sans justification mais avec formulation des
questions qui se posent a leur sujet,
3) y'=y(x-y)-I , la troisitme amide, et l'on demandait cette fois, de tracer des formes a priori
possibles pour une solution CI passant par un point (x,y) verifiant x>0 et y<0, puis de prevoir
le trace de la solution Cs passant par le point (3,3).

Les traces correspondant sont les suivants (dans les formes a priori possibles nous n'avons fait
figurer raisonnablement a ce niveau que des types a derivee monotone) :

ill_mia,LIIIIILAgami.

Tmpp---- 0

Les rtsultats, donnes en pourcentages, pour des effectifs entre parentheses, sont les suivants :

Armee 86-87 Groupe I (29) Groupe II (30) Groupe III (30)Regionement 90 83 80Trace Co 69 -70 57Trace Ci 55 83 50Trace C2 76 80 63

Armee 87-88 Groupe I. (23) Groupe II (26) Groupe III (32)Regionement 83 96 94Trace Cr 52 77 842 types au moins 65 73 81Tract C: 57 73 81

Armee 88-89 Groupe I (26) Groupe II (31) Groupe III (29)Rtgionement 88 84 86Trace Co 88 84 863 Types au moins 85 77 62Trace Cr 80 71 69

Ce developpement progressif mais sans obstacle majeur des competences d'interaction
nocessaires a la prevision, dans les cas simples du moins, est confirmee par les autres donntes
issues de la recherche.

V - INTERACTION ET TACHES DE JUSTIFICATION
C'est en fait a ce niveau que se sont concentrees les difficultes rencontrtes. Ceci est

frappant si l'on se reftre encore une fois aux rtsultats des evaluations finales. Nous
selectionnerons trois taches caracteristiques de ce registre : prouver qu'une solution coupe une
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courbe donnee - qu'elle ne peut couper une courbe donnee - prouver qu'elle admet une

asymptote ou ecarter la possibilito d'un tel type de branche infinie.

La premiere annee, ces trois caches sont presences dans la justification demandee du

trace de Cc sur l'intervalle I-2,4-aq. Les resultats sont les suivants :

Intersection Cc, lo (x <0) 10 30 23

Intersection Cc, lo (x>0) 0 10 13

Non-intersection ensuite 3 10 13

Cc asymptote a lo 0 23 0

Ces resultats sont clairs. Its opposent sans ambiguit6 les competences manifestoes darts

les autres registres a la faiblesse du registre justificatif. Si l'on etudie par exemple les justifi-

cations proposees par les etudiants pour les probltmes 'de croisement, on s'apergoit qu'il y a

deux grandes tendances : celle qui consiste a decrire simplement le trace et celle qui consiste

a produire une justification formulee dans le langage classique de l'analyse. On reconnait

alors dans les textes, malheureusement en vrac, les ingredients des demonstrations analogues

faites par les enseignants.

Des difficultes, d'origine cognitive at didactique, contribuent, me semble-t-il, de facon

essentielle a ce phenomene. Le passage du registre de la prevision a celui de la justification

necessite en ef let un changement de point de vue. Dans le premier cas, it s'agit de produire un

trace, le plus simple possible, respectant des contraintes imposees. Les regles du jeu sont les

memes que lorsqu'il s'agit de resumer dans un graphe tous les renseignements obtenus sur une

fonction, tache classique pour les etudiants. Dans le second, le trace produit doit a la fois

etre support du raisonnement et objet de doute : 6tait-il le seul possible ? Contre quell&

autres eventualites a-t-il 6t6 plus ou moms intuitivement choisi ? Ce renversement de point

de vue n'a aucune raison d'etre facile. La difficulte est renforcee par le fait que, dans

l'enseignement usuel, it n'est nullement sollicite, le cadre graphique etant un sous-cadre

utilise pour la representation, non pour la justification.

Une analyse plus fine de la sequence d'enseignement montre d'ailleurs que ce statut

inferieur du cadre graphique n'a ote entame que superficiellement dans l'experimentation

realisee : le cadre graphique y est omnipresent mais au niveau prevision - interpretation

uniquement. Les notions de barriere, de zone... qui permettraient de le rendre operationnel au

niveau des justifications n'ont pas et6 introduites. II y a semble-t-il plusieurs raisons a cette

non introduction :

- la volonte, tout a fait legitime par ailleurs, de faire de l'enseignement qualitatif sur les

equations differentielles une occasion privilegiee de faire fonctionner les outils fondamentaux

de l'analyse elementaire en cours d'apprentissage ,

- la force du rejet traditionnel par l'enseignement du cadre graphique comme cadre de

justification. L'enseignant a du mal a s'opposer a ce rejet et, meme s'il essaie, it se trouve

confronto a des difficult& serieuses : it lui faut negocier un contrat avec les etudiants a

partir de Hen, Pour une demonstration classique, ce contrat reste implicite et meme si le
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consensus evolue sans cesse, c'est sur la base d'un consensus de depart. Pour une
argumentation graphique, toutes ces questions apparaissent au grand jour : quels sont les
points qui meritent justification, quels sont ceux sur lesquels on peut, voire on doit, glisser ?

A quels arguments a-t-on droit ? Comment rediger ?

La seconde annee, compte-tenu des analyses effectuees, diverses modifications ont ete

apportees. En particulier, le cadre graphique est devenu operationnel au niveau justification

par la definition des notions de zone, de champ rentrant et de champ sortant par rapport a
une zone, l'enonce de theoremes permettant la manipulation de ces, notions et la legitimation

explicite de raisonnements formules directement dans ce cadre. Si l'on se rapporte encore une

fois a ('evaluation finale, les problemes deja cites etaient presents a travers les questions
posees concernant la justification des comportements de Cs et Cs pour x>0. Les resultats
obtenus sont les suivants :

Non intersection Cs, Io

Cs asymptote a Io
Intersection C2, Io

13

39
13

77
62
54

19
44

13

Its traduisent une progression evidente. Mais tout aussi frappante est l'importance des

disparites entre les groupes. Les resultats des groupes II et III par exemple ne se differencient

que dans ce registre et les differences sont particulierement fortes dans la gestion des
problemes de croisement. Une analyse des procedures montre que, sur ce point, toutes les

justifications correctes sauf 5 sont basees sur l'utilisation de zones et que les differents
groupes n'ont pas construit le mtme rapport aux instruments de justification graphique
introduits. Et meme dans le groupe oil visiblement ces instruments font pantie a part entiere

des outils de legitimation (groupe II), it subsiste une difference entre les problemes de non-

croisement et ceux de croisement ou les etudiants se laissent davantage pieger par l'evidence

perceptive et regressent a des preuves du type : Cs decrolt et lo croft, donc elles se coupent.

En revanche, on ne note pas de difference inter-groupes, dans l'ensemble des donnees

receuillies, au niveau des preuves ou re jets d'asymptotes : les etudiants ont massivement
recours a une interaction entre cadres mettant en jeu l'enonce suivant : si une fonction
derivable a une derivee qui tend vers une limite non nulle a l'infini, elle tend elle-meme vers

l'infini. Cet enonce, de forme classique, s'etait roved l'annee precedente comme un theoreme

local du groupe II et expliquait les quelques reussites constatees dans ce groupe. It est devenu

un theoreme "officier et ne pose visiblement pas les memes problemes didactiques que les

enonces portant sur les zones et les barrieres. Mais on voit aussi persister malgre l'insistance

de l'enseignement sa version erronnee : si f(x) a une limite finie a l'infini, sa derivee tend
vers 0, claire manifestation de la difficulte a rejemr au niveau des generalisations necessaires

aux preuves le modele monotone qui guide si efficacement les traces au niveau des
previsions.
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Ainsi donc les resultats obtenus dans revaluation finale, coherents avec les autres
donnees recueillies, tendent a montrer que dans un environnement didactique adapte, les

relations entre cadre graphique et algebrique peuvent s'otendre des capacites d'interpretation

et de prevision a des capacit6s de justification. Et l'on peut faire rhypothose que les
differences constat6es ici entre les groupes, au dela des differences de niveau sans doute
recites des Coves, t6moignent aussi du degre avec lequel les enseignants impliques dans

l'experience ont reussi a investir dans leur pratique ces outils non familiers et roussi a vaincre

les reticences de l'enseignement usuel visa vis du cadre graphique.

L'exparimentation de la troisleme armee, avec les etudiants faibles, tend a confirmer

cette interpretation. Les resultats de revaluation finale concernant les problemes d'asymptote,

de croisement et non-croisement sont donnes ci-apres (les enseignants des groupes I et II

etant ceux des annees precedentes, l'enseignant du groupe III etant un nouvel enseignant) :

Asymptote 54 48 28
Intersection 19 52 24
Non-intersection 46 45 10

VI - CONCLUSION

Les resultats obtenus, mettle s'ils restent locaux, tendent donc a confirmer l'hypothese

initiate d'une coexistence entre difficultes cognitives et difficultes didactiques dans la

construction des relations entre cadre graphique et cadre algobrique a propos de la notion de

fonction. Mais ils permettent aussi, me semble-t-il, de mieux comprendre l'imbrication de

ces difficultes et d'avaluer 'Influence de cette imbrication sur la resistance de difficultes que
l'on pourrait hativement cataloguer de cognitives exclusivement. L'imbrication entre

difficultes cognitives et didactiques n'est pas independante des registres dans lequel

l'interaction est appelee a fonctionner. Elle se manifeste ici, de facon resistance, dans le
registre de la justification traditionnellement inexistant dans le cadre graphique. Mais, dans

ce registre, elle est suffisamment forte pour survivre a une experience d'enseignement qui la

prend explicitement en compte.
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UNBALANCE AND RECOVERY
CATEGORIES RELATED TO THE APPROPRIATION OF A BASIS OF
MEANINGS PERTAINING TO THE DOMAIN OF PHYSICAL THINKING

CONSTRUCTING THE NOTION OF ANALYCITY (CASE STUDIES>

Ricardo Cantoral

SECCION MATEMATICA EDUCATIVA DEL CINVESTAV IPN

MEXICO

in the deetment at a resear:h atmtr:f to extract theaonstruattn mechanisms or mathemattcat :ancepts ana
processes retate to Cateutus. when tnese are futaed
the phystcat thtnktno: or preatcttnf the phenomena of
conttnuous ftux to nature. we stuatea these mechantsms
.:symbtttp and predataraperattnf the transtttan between
the. not tarts of Prediction and Anal.ysts.. We.have adapted
the c[inicaL approach used to case studies. tvith teachers
in the field of phystc-mathemattcat sciences. pertaining
to the Mextcan Educattanat System.

1. STATEMENT OF THE PROBLEM. Determining the variables.

Our research now reports results on a new stage. and it

shows new approaches in the theoretical and methodological

fields. as well as in the domain of didactics. In the

theoretical realm. we started with an epistemological analysis

of the Taylor's Series CTS> mathematical concept. focusing our

attention on the transition mechanisms between these two notions

of scientific contiguous domains: predtc t ton. which belongs to

physical sciences, and and!'ittcat functton, peculiar to

mathematics 1Cantoral.19892d. This permitted to recognise a

basis of meanings for the TS. which places it as a cognitive

instrwment enabling to observe the evolution of flowing objects,

and. conseguentely. to predict their behavior. This meaning of
physical nature. suffers a predator process of Dtdacttc

Transposition which conceals its primary meaning ECantoral.1989I

The new paradigm of Calculus assigns to the TS the meanings

usually associated with a mathematical result. i.e. those that
are nourished from the relationship with other mathematical

objects. On the other hand, the models of inductive

101EST COPY AVAILAIBLE

19



generalization and those of functional metamorphosis [Cantoral.

1989]. are the ones prevaling in the present. day mathematical

analysis.

Concerning the methodological level. we adopted the

clinical approach used in case studies within a research

atmosphere and controlled teaching. in which participating

subjects were engineers and physico-mathematicians whose field

of endeavor is teaching, in the domain of Engineering Sciences.

This working system involves old didactic elements [Cantoral and

Farfan. 1987]. as well as the treatment of germinal ideas as

recognized in the analysis of classic originals [Cantoral and

Farfan. 1989].

Finally, in the didactic field. research points to the

reconstruction of a Calculus didactics based on the teachers

everyday intuitions and experiences, inspired by a real

phenomenical closeness. where the center of analytical focus is

the phenomenon. and not the concept.

§ 2. THE RESEARCH PROBLEM. An Anatomy.

The major problem in this research consisted in analyzing

the construction processes of mathematical knowledge (the notion

of Analytical Func tc,r4) when these are guided by the thinking of

nature's continuous flux phenomena. In connection with this. we

studied the functional mechanisms which operate the relationship

of a dialectic nature between the notion

pertaining to the physical sciences and Engineering. and that of

Ar.aV;sts, which is peculiar to Mathematics.

3. TEACHING AND ITS APPROACHES. Population and Contents.

Within the framework of a model of Mathematics Teachers:

Updating, among practicing teachers. we designed and implemented

20
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a research and teaching program whose main object of study is

Calculus as taught to future engineers. This program started in

December. 1987, and was attended by 49 teachers. As an everyday

technique, we tried to approach the discourse to the research

results. Mathematics in context was discussed. saturating the

discussion with Newtonian mechanics aspects closely related to
their professional experiences. The working dynamic, with

ten-hour sessions every two weeks for almost two years. made it

possible to work with these teachers without their having to

abandon completely their teaching duties. At least two didactic

approaches were discussed; one of them arose from the results of

research concerning the reconstruction of school mathematical .

discourse. or from old strategies presenting variation together

with the Fredtcttn Idea (PI).

This didactic atmosphere considered an essential fac,, in

the old days'didactics: PI makes of TS development the cognitive

instrument par e:::.-et terse in the observation of variation

phenomena. It is used to state: solve. and interpret problems.

We worked on the two basic models of discourse associated to TS;

PI. and the Convergence Idea. To the conventional approach to

Calculus, which makes of it an instrument of convergence 1::<%? =

P
n P. where F. is treated as a remainder or as an order of

magnitude, we opposed another. which we recognized during our

research, and which places TS as the Prediction instrument for

things that flow continuously. Thus. vhen the initial state of
the system in evolution is known through data such as :,:.

etc.. the Value assumed by !:,-)%.) is announced. just with
them!.

In order to develop the experiment. a sample of 4 teachers

was chosen. seeking to make it representative of those who had

21

103."



constructed knowledge. The sample' included 1 physico

mathematician. and 3 engineers. They work for University

Education Institutions. in Engineering areas. or for Medium-High

Education, in technological areas, where. besides teaching

subjects in those specialties. they also teach Mathematics or

Physics.

§ 4. FROM PREDICTION TO ANALYSIS. Its productions.

We now present an analysis of productions in knowledge

construction. This conservation of PI pointed to the fact that

not only the action itself of Prediction had to be studied, but

also that which permits to predict; the Praedtctere. which makes

itself manifest in the recognition of a basic information unit,

by means of which it is possible to announce that which will

happen. We classified PI.according to the following scheme:

Prediction

ShOrt-term{

tuts -term {

I

in dtscrete i'artattor. er.vtrs7iments

in conttni,ous t,urt-a:tcqvsnytycnments

to dts:rete i,artatton envtrc,nmenes

in f.onttnuous. i,artatton en,tr.onfr.encs

A comprehensive observation of solution provided by the teachers

permite to recognize that when the following term is sought -and

not the behavior ad tnftnttum- (short-term prediction) of a

discrete variable describing the succesion a
1

. a2. a9. a

fixation is produced on the local growth at -.a2, a 2-4a3
. a

3
-4a

4
.

etc- and from this, by another constanttft.zattc,rt process, an

attempt is made at recognizing the stable nature of the change

process. The usual procedure is to observe the first diffrence

a -a . the second difference and so on,
k n-i n) (" n

In general, the regular behavior is sought. of that which is

variable. This clearly determines primary approach strategies,

which. due to the fact that they are functional mechanisms of a
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cognitive kind. they are preserved when passing from the

variation in discrete environments to continuos contexts. In

this sense, they are phenomenological principles inherent to the

nature.of the variation.

In this way of looking at the problem, a natural form is

associated to the following array a -a n-t where <'. n? is

"easier" to study, as regards its variation, than a itself.

Thus the following term a . depends on the preceding one a .
n+1

and of something which is regular a,=ap_1.-"n..). In this

additive strategy predominated strongly their following results,

and its presence temporarily precludes recognizing long-term

prediction in discrete environments. Trough other questions. it

was sought to determine prediction strategies when the .additive

recourse used so far was no longer available. In these, the task

was to complete the linear sequence 1. 0, -1. 0. 1, in

three of the four answers. resort is made to a new strategy

which does not use the preceding recourse, but an algorithm of a

ciclic nature which links the last element with the first one.

This is interesting. due to the fact that, in the absence of

regularity patterns between succesive terms. the procedure

becomes some sort of conservation principle by means of which it

is sought that something the ctcttc,rem:atns canstant.

In questions suggesting long-term prediction, we tried to

find out whither the strategy had been stable. Three of the four

Professors recognize that-the value of the last element in the

array depends of the values of
o

and of its successive

differences
Yo'

4

L ' LzYo" 2 Yo
. and y

o .
Thus initiatesYo'

the recognizing process vheretw a let,- initial values are

sufficient to announce the final result.

This model. although permitting the successful solution of
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problems in this context. will become an obstacle for those in
continuous variation. This scheme, which we call the

Praedtctere, appears in the recognition of patterns which are
only valid for the situations where it stems. They do not

construct strategies that can be "inherited" by new situations.
This situation becomes interesting because when passing from the
prediction processes in discrete environment to those which are
established in continuous environments. action strategies are
inherited. Thus, a principle of conservation of the Pr t ere

is operated.

As the kinematic representations of long-term prediction in
continuous environments, they referred to the possibility of

determining the position of a moving object at every instant,
whenever its initial features of movement have been made

explicit: thus we know its position and the manner in which it
varies. Their answers find support in those stretegies belonging
to discrete environments, and the study of the war in which it
varies is) is decisive in the subsequent state of its

n n-i

evolution. The variation of position as with respect to time rt

is called the measure of the variation mariner.
Finally, questions were asked about formulas describing

position s: at any moment. for this provided some information
on the initial state. Here, a regular situation arises. as to
performance so far obtained: three of our four teachers
immediately attained long-term prediction in continuous

variation environment, with a strong similarity with that
obtained for discrite variation envirinments. In all cases.

their answer was =s0 z On the other hand.

there came to pass that in the absence of the telescopic

predictor model for discrete variation. no general strategies
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inherent to the variation were constructed. but a search was
initiated for formulas. or the task of completing tables was

attacked.

F1 5. UNBALANCE AND RECOVERY.

It is in this sense. that the nature of movement- phenomena.
referred to continuos flux phenomena. given a tint to
instruments and strategies which operate when approaching

predictions problems. It is essential to describe hcto their
,,evolution occurs, which means announcing what. will happen with

the behavior of flux: in other words, it is necessary to Predict
their development. For instance, the flow of water is induced by
the presence of a difference in pressure at neighboring points
pi pC x.) . which. if zero, will indicate an equilibrium and.

therefore. an absence of movement: naturally, if different from
zero. it announces the presence of flow. which will have to

occur in some preferential direction. Analogously, the

prpagation of heat is determined by an effective difference of
temperatures at neighboring points .--.. The

accumulation of heat in a body obeys to the action of the net
difference in temperature variation at neighboring points, and

this is expressed by
The nature of flux phenomena underlines the need to study

differences of the type cc:CA.d..4..)-w!.4?. where < can represent a
wide variety of particular physical parameters. Thus. the

fundamental difference becomes the cognitive instrument par

excet.i.erce. and it participates of the nature of the phenomenon.
Such a difference will be completely determined by the behavior
of its variables at point .4. i.e., by means of the difference

ar

0
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§ 6. GENERAL CONCLUSIONS.

In the productions analyzed, an evolution is perceived in

the recognition mechanisms of the fundamental difference as the

object of study of variation in discrete environments; such a

difference is gathered and organized in a wider framework of

-mentat homotats- through a refteotto process of one

environment on another one. At that moment certain processes of

analogy arrangement come into operation. enabling .he embodvment

of the former processes. A re-arrangement of such representation

in continuous environments is not sufficient to achieve

long-term prediction: it is necessary to construct praediction

strategies which. propped up by the study of the Fraeczictere.

succeed in being continued in long-term predictions. It is

established as a functtonat a prtcrt for this qualitative jump,

the joining of the presence of the Fraedtctere. and the

strategies linking the local fundamental difference to the

comprehensive one, through a couple of basic principles: the

heredttar'i character of the process. and its feasible

constanttftootton.
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ON DIFFICULTIES WITH DIAGRAMS: THEORETICAL ISSUES

Tommy Dreyfus

Center for Technological Education
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Theodore Eisenberg
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Beer Sheva, Israel

Although visual approaches are often advocated in mathematics,
students do not readily adopt them. This paper puts forth cognitive
and didactical considerations to explain this reluctance to visualize.

1. On the reluctance to process visually:

It is well documented in the literature that a vast majority of students are more
inclined to process basic mathematical concepts in an analytical framework rather
than in a visual one. The research of Dick (1988), Eisenberg and Dreyfus (1986),
Monk (1988), Mundy (1987), and Vinner (1989) have established that this
reluctance to use visual arguments exists and is wide-spread in student
populations. The gravitation toward analytical representations affects all ability
levels, even the mathematically precocious (Clements, 1984), and it doesn't seem to
matter if the concepts were initially presented to the students in a visual framework
or in an analytical one or in both; students are reluctant to visualize.

Students seem to consider the visual aspects of a concept as something peripheral
to the concept itself. E.g., zeroes of a function f(x) are those values of x where f(x)=0,

and it just so happens that at those values the graph of f(x) crosses the x-axis; a
function f(x) is oddlf f(-x) -f(x), and it just so happens that its graph is symmetric
with respect to the origin; functions f(x) and g(x) are inverses of each other if, for each

x in their respective domains, g(f(x))=x and f(g(x))=x, and it just so happens that
y=g(x) is the equation which represents the reflection of the graph of f(x) through the
line y = x; this list could be extended ten-fold, but the conclusion is unavoidable;
analytic descriptions of a property are preferred to visual descriptions of them.

More specifically,in the case of calculus Balomenos, Ferrini-Mundy, and Dick (1988)
concluded:

Despite the calculus teacher's predilection for diagrams, our
research indicates that students resist the use of geometric, and
spatial strategies in actually solving calculus problems (p.196).
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In another study Dick (1988) concluded:

There was no evidence of graphical interpretation of any kind ....
even college students of relatively advanced mathematical training
can be expected to ignore the use of their own graphs, even when
these are produced immediately preceding a computational
problem for which they could be used ...(p2).

In other words, students do not know how to exploit diagrams they themselves draw

in order to- solve problems. The drawing is considered to be peripheral to the
problem-itself, and this seems to be a general finding in mathematics instruction.
Indeed, Sowell (1989) concluded from a meta-analysis of 60 studies that:

Instruction with pictures and diagrams did not appear to differ in
effectiveness from instruction with symbols (p. 499).

Why is this the case? Why is the reluctance to visualize basic mathematical concepts

as wide-spread as it is? Authorities advocate the benefits of thinking of mathematical
concepts in a visual way; e.g., Solomon Lefschetz (editor of the Annals of
Mathematics) ... saw mathematics not as logic but as pictures ... To be a scholar of
mathematics you must be born with...the ability to visualize ... (Halmos, 1987, p. 400),

and to work in chaos theory ... Graphic images are the key (Gleick, 1987, p.38).
According to Rival (1988, p.41): Mathematicians are rediscovering the power of
pictorial reasoning, but why then is this interest in visualization not exploited by
students? Some, like Polya (1945) and Sawyer (1964), have been proselytizing
the use of visualization skills for many years. But a groundswell of advocates has
never existed. Fischbein (1987) states: What characterizes diagrammatic models is

the fact that they represent intuitively the original reality via an intervening
conceptual structure. Without a clear understanding of.this intervening structure,
with its laWs and constraints, the diagram cannot deliver its message (p.165).
Fischbein seems to have put his finger on the problem; students often lack these
intervening conceptual structures so that diagrams can deliver their messages, and
there are reasons for this absence .

The studies by Goldenberg (1987), Hershkowitz (1989), Monk (1988), and
Yerushalmi and Chazan (in press), are examples, from geometry and from analysis,

where researchers have identified specific conceptual difficulties students incur
when they need to use diagrams. But these are episodic in nature. In this paper, we
attempt to identify some of the deeper common reasons underlying these difficulties.

Our approach combines two points of view: a didactic one, based on work by
Chevallard (1985), and a cognitive one, based on work by Larkin and Simon (1987).
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2. Why diagrams are difficult; a didactic reason:

According to Chevallard (1985; see also Seeger, Steinbring and Straesser, 1989),
knowledge undergoes a fundamental change when it turns from academic
knowledge as known by mathematicians into instructional knowledge as taught in
school; this change is called a "didactical transposition."

Academic knowledge is very intricate and contains many links and connections;
these cannot be presented as a package since presentation is always sequential,
one thing after the other. So the elements of knowledge have to be taken apart and

ordered sequentially. The didactical transmission of knowledge implies the
formation of a linear text, which structures the knowledge, giving it for instance a
beginning and an end. As a consequence, links between concepts and procedures
are omitted or destroyed; relationships, which are among the most important aspects

of mathematical knowledge, have to be (re-)constructed painstakingly. In addition, in

school, knowledge is necessarily taught separated from its context. These factors
lead to a strong compartmentalization of knowledge: Mathematical knowledge is split

from a "body of knowledge" into a large number of isolated "bits of knowledge. "

From Chevallard's didactical transposition, it follows rather directly that school
knowledge is best represented sequentially, not diagrammatically. Because school
mathematics is usually linearized and algorithmetized, it is so presented to students,

and so preferred by them and so processed by them. An analytic presentation is
basically sequential, and although it is possible to present intricate relationships
analytically, this has to be done by taking them apart, quite as in the didactical
transposition.

3. Why diagrams are difficult; a cognitive reason:

Larkin and Simon (1987) take an information processing point of view. They
compare the accessibility of information needed to solve a problem when it is

presented in a diagrammatic, versus a sentential form. (Accessibility can mean
either ease of recognition or efficiency of search.) The distinguishing feature is that

diagrammatic representations explicitly preserve topological (and geometric)
relationships between components of the problem; sentential forms do not explicitly
preserve these relationships. As a consequence, information-may be more
accessible in a diagrammatic representation than in a sentential one, even if the two

representations contain precisely the same information. This strength of
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diagrammatic representations is achieved by "indexing information by its location in
space"; that is, many elements in a diagram can be adjacent to each other, whereas
in a sentence, any element is adjacent only to its two neighbors, the one preceding it
and the one following it. In a good diagram, then, all information about a single
element is grouped together.

Consider, for example, the following question from Monk (1988):

Fig. 1: A Pointwise and Across-Time Question

i) Pointwise: Determine the values of A(1) and A(3).
ii) Across-time: The point p moves from 4.5 to 6.0. Does

the area A(p) increase or decrease?

y

x

In order to realize how much information is implicit in the diagram, the reader may try

to give the data and formulate the question in a sentential format, avoiding a
diagram. Then, imagine a student who needs to answer the question. As teachers,
we naturally expect the question to be easier to answer if given in diagrammatic
form. This is, however, only conditionally so. In fact, it is so only for students who
have learned how to read and use diagrams of this kind. This diagram (as well as
any other one) uses conventions, notations, generalizations, and abstractions
without which the diagram is unintelligible. These start with the properties of the
number line(s), the association between points in the plane and number pairs, the
possibility of interpretation of a point in terms of a preimage-image pair of a function,

the graph as the set of all points of the form (x,f(x)), and continue with properties of

the function as represented by the graph such as continuity, area under the graph,
the relationship between neighboring points on a graph (increase, decrease,
concavity) etc. Some of this information will be needed for solving the problem, some
will not. Therefore, even if all of the above elements are at the disposal of the
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student, it may be very difficult for him to quickly focus on the relevant information,
disregarding the rest.

Larkin and Simon provide and analyze in much detail, examples from physics and
geometry which exhibit the differences between diagrammatic and sentential
representations. Although their main aim was the analysis opposing the two kinds of

representations, they have also noted that many diagrams, and among them function

graphs, do not describe actual spatial arrangements; therefore, they have inherent
interpretations and conventions of the kind pointed out above; and consequently,
they are useful only to those who know these interpretations and conventions and
can thus develop thinking processes which exploit the advantages of the diagram. In
summary, while to the knowledgeable diagrammatic representations are far superior
to sentential ones for solving many problems in mathematics and physics, they may
be completely unhelpful to the neophyte.

4. Combining Chevallard, Larkin and Simon:

In brief, Larkin and Simon have shown that diagrams contain information, in
particular, relational information, in highly concentrated, localized, strongly non-
linear form. Chevallard has made the point that knowledge, as it enters school has
to undergo a didactical transposition, one of whose main features is linearization.
From this it follows logically, that it is natural to present school knowledge
analytically, rather than diagrammatically; and it therefore should come as no great
surprise that students prefer an analytical framework over a visual one.

An analytical presentation, being sequential, is simpler to absorb elements are
presented one after the other, none are missed. Relationships between the elements

may be lacking; if they are present they have to be introduced separately from the
elements, tacked on to them.. Diagrammatic representation is simultaneous, the
elements and relationships between them are apparent at the same time, at the
same location. They are therefore likely to be difficult to read, absorb, and interpret.
Similar statements apply to thought processes: Visual processing is anything but
linear, and as such, it represents a higher level of mental activity than analytic
processing.
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As an example, a rather arbitrary one, consider the following "proofs without words".

fig. 2: Proofs Without Words

a) b)

n n-1 2a bA --m> B = Irab =n
i=1 i=1

E(2 -1) =n2
i=1

d)

1 /2

3
1/2 H

/22

00

E112i = 1
i=1

Each diagram conveys the cognitive structures which have to be built in order to
understand the proof. Focusing in on Fig 2c, we see how naturally the three
separating lines structure the diagram in such a way that the equality of the two
expressions in the equation becomes evident. This is due, to no small extent, to the
properties inherent in the diagram itself. The diagram is structured so that the
needed groupings and relationships become apparent by proper spatial
relationships. Successive terms in the sum, for example, are represented by
neighboring groups of points. The proof thus becomes a single unit, immediately
understandable.

But how would one present such a proof to students? It is rather difficult to decide
what to say first, where to start and how to get to the conclusion. Not only are many
of the relationships likely to be lost on the way; it may take quite an effort for the
students to get to the stage where they can see the entire argument from the
diagram. And even if they do (or seem to), they may well turn and ask whether the
statement can now be proved mathematically, i.e., analytically. It will probably be
quite a bit easier for the teacher to rely on the fact that the sequence is arithmetic, to

use the "well-known" formula for the sum of a finite arithmetic sequence, and to do
the necessary algebraic manipulations. The students will no doubt accept that the
statement is true, but their understanding of what the implications of the proof are,
and where else the result could be used, will be considerably reduced. Vinner's
(1989) results show clearly that an analytic formulation of a proof is preferred by the
students, even if they seemingly could not make much sense out of it.
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5. Conclusion:

This paper has documented that students are reluctant to think of mathematical
concepts visually. It presented reasons as to why this reluctance to visualize is as
widespread as it is. Diagrams are useful only to those who know the appropriate
computational processes for taking advantage of them ( Larkin and Simon 1988, p.
99). It seems as though visual processing is at a higher cognitive level than analytic
processing. This hierarchical ordering of these two skills gives rise to a host of
reasons why visual processing should be stressed in the curriculum at the expense
of analytic processing. One of the foremost of these reasons is that obtaining the
skill to think visually will automatically improve one's skill to think analytically; but the
data seem to show that the opposite is not the case. Reading a diagram is a learned

skill, it doesn't just happen by itself. To this point in time graph reading and thinking
visually have been taken to be serendipitous outcomes of the curriculum. But these
skills are too important to be left to chance.
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THE TWO FACES OF THE INVERSE FUNCTION

PROSPECTIVE TEACHERS' USE OF "UNDOING"

Ruhama Even'

The Weizrnann Institute of Science, Israel

This study investigates prospective secondary math teachers' knowledge
and understanding of the inverse function. It draws on analyses of
questionnaires and interviews with subjects from eight universities in the
USA. The findings suggest that many prospective teachers, when solving
problems, ignore or overlook the meaning of the inverse function as
"undoing" what the function does. They also overgeneralize the idea of
undoing. Their "naive conception" results in mathematical difficulties, such
as not being able to distinguish between an exponential function and a
power function, and claiming that log and root are the same thing.

Introduction

Functions opened new opportunities in mathematics. In addition to the typically

algebraic operations of addition, subtraction, multiplication, division and raising to

power, functions can also be composed and inverted. "The strength of the function

concept is rooted in the new operations--composing and inverting functions--which

create new possibilities" (Freudenthal, 1983).

The study reported here is part of a larger cross-institutional study of prospective

secondary teachers' knowledge of functions (Even, 1989). This paper describes the

prospective teachers' knowledge and understanding of inverse function. It concentrates

on two different aspects of conceiving inverse function as "undoing". "Undoing" is an

informal meaning of the inverse function which captures the essence of the definition.

The importance of this informal meaning is also recognized by the National Council of

Teachers of Mathematics who recommends that all students explore the concept of

inverse function informally as a process of undoing the effect of applying a given

function, while the precise definition of inverse function and composition of functions be
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reserved for college-intending students (Curriculum and Evaluation Standards for School

Mathematics, 1989). The paper starts with a discussion of the use (or lack of use) that

prospective teachers do with their informal knowledge and understanding of the meaning

of inverse function as undoing. Then it describes problems with the inverse function as

a result of dealing with it on an informal level of "undoing" only, with no relation to the

mathematical notion of inverse function.

Method

Participants were 162 prospective secondary mathematics teachers in the last stage

of their formal preservice preparation at eight midwestem universities in the USA. Data

were gathered in two phases from November 1987 to April 1988. During the first

phase, 152 prospective teachers completed an open-ended questionnaire. This

questionnaire included non-standard mathematics problems addressing six interrelated

aspects of function knowledge (Even, Lappan, & Fitzgerald, 1988). The questionnaire

also asked respondents to appraise and comment on examples of students' work (each of

which represented some misunderstanding or error related to functions). An additional

ten prospective teachers completed the questionnaire during the second phase of data

collection, and intensive interviews were conducted with the ten subjects in order to

augment the analysis.

Meaning of Inverse Function as Undoing

When working on problems and answering questions that dealt with inverse

function, many prospective teachers seemed to ignore or overlook the meaning of an

inverse function as "undoing" what the function does. Instead, they used unnecessary

calculations. For example, the participants were asked the following question:
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********* ***************** ******* ******* ***** * *********** *************

Given f(x) = 2x - I and f -1(x) = x_±_1.0_. Find (f -1* f)(512.5). Explain.
2

The following Table summarizes the ways in which the first phase subjects

answered the question. The rows present the number of people who used each of the

different methods. The columns describe the correctness and completeness of the use of

the method.

Correct Incorrect Not complete No Answer Total

Inverse property only 27 7 1 35

Inverse property &
calculations

26 0 0 26

Calculations only 31 17 14 62

No answer 29 29

Total 84 24 15 29 152

From the Table we can see that about half of the participants who answered this question

did not refer to the concept of inverse function and its "undoing" meaning at all in their

answer even though by using the idea of "undoing", the answer to this question is

immediate. These people just went ahead and attempted to calculate the answer. Less

than half of the participants (53) based their answer on the correct "undoing" idea. One

subject, for example, answered:

" (f-1 f)(512.5) = (512.5) When you put in a value and then put it in to the
inverse function you'll get back the original value."

Although using the inverse property was sufficient, half of the participants who

39

120



used this argument (26 out of 53) added calculations of some sort. There were several

reasons for using unneeded calculations together with an explanation that was based on

the meaning of inverse function. One reason was that the solver knew and was able to

use the inverse property, but either felt uncomfortable not using all the given data (the

specific functions at hand) or felt that stating a property (or a definition) was not enough

to be considered as an explanation. One subject, Valerie, for example, wrote:

"man- 10+ l0 - 2(512.51_ 512.5 All that has been done is taking the inverse of a
2 2

function." Later she explained that she used the calculations as a way of explanation.

...So I didn't know if you wanted me to show it or just explain, so I just
wrote it out...I wasn't sure what' explanation you wanted.

This attitude points to a misunderstanding of what counts as an explanation in

mathematics--a finding that fits with other research on prospective teachers'

understanding of mathematics (Ball, in press; Even & Ball, 1989; Martin & Harel,

1989), and research on students' understanding of the validity of formal proofs in

mathematics (e.g., Fischbein & Kedem, 1981).

Another reason for using the "undoing" idea together with calculations was that

the solver did not consider the meaning of an inverse function until confronted with the

original number: 512.5 as the result, realizing that the result of the execution of the

calculation should have been known from the beginning. For example, Mike, who did

not use the inverse property in his answer to the questionnaire, was asked to explain his

work (all he did on his questionnaire was to give instructions of how to find 1(512.5)

and then to plug that result into f-1 to find the answer, without really doing that).

R: Ok. So what was the answer [the number]?

M: I didn't figure out the answer.

R: Can you figure it out right now?

M: Ok. (Figuring answer.) r 1(512.5) 512.5 + 10
2

And then you're going to do f of this, and I said this equals c. Take f of...
(works on the calculations and gets back the number 512.5). I guess I
should have known that you are going to get... since you get the same
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number. I didn't realize it happens before (looks embareced).

R: Ok. And why are you supposed to get the same answer?

M I just worked it out. (Laughs at himself.) Because you're just taking a
function and then taking its inverse. So... I should have known that.

It is clear that Mike and others "knew" the inverse property. Still, they did not draw

upon their conceptual knowledge but rather approached the problem by using an

unnecessary procedural knowledge.

Looking at the inverse function as "undoing" what the function "does" is helpful

in understanding the concept of inverse function. But limiting one's conception of

inverse function to this "naive conception" only, results in mathematical difficulties.

This is discussed in the next section.

Undoing as Naive Conception of Inverse Function

A power function (e.g., f(x) = x3) and an exponential function (e.g., f(x) = 3x)

look similar. This similar appearance completely disappears when the inverses of the

two functions are considered. Root (which is actually also a power function) is the
inverse function of an odd power function (e.g., f(x) = 341, since 3 & =x), while log is

the inverse function of an exponential function (e.g., f(x) = log3x, since log33x=x ). An
even power function does not have an inverse function since it is not a one-to-one
function.

The following question deals with the relationships between these four functions.

**********4***********************************************************

A student said that there are 2 differentinverse functions for the function f(x) = 10x :

One is the root function and the other is the log function: Is the student right? Explain.
*** * *4, *4. *4. * ** * * **** * 21. * * * ** * * * ** * * ** ** ** *** **** * * * * * * ***if

The term "root function", which is the inverse function of a power function, is not used

very often. So the participants had to decide about the meaning they wanted to attach to

it. The most common description of the root function by the participants was the xth
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root of 10 or just the xth root (without specifying 'of what). These subjects

overgeneralized the idea of a root function, such as the square root: f(x) = 24Z, or, in

general, f(x) = rtf (where n is a parameter), to an exponential function in the first

place--f(x) = x4-115, and to an incorrect use of variables and parameters in the second

place--f(x) = x4.- Both "function" descriptions meant: take the xth root of what you have

(which was 10x) but neither description was appropriate. One subject, Tracy, used x'sii

in the same manner, checking both the log and the "root" functions.

"f-1(x) = logx : log(10x) = xlog10 = x correct

f-1(x) =
1

(lox) x = 1() -- incorrect."

Tracy used correctly the algorithm for checking whether a function is an inverse function

but she did not really use her own definition of a root function. She composed the two

functions and checked to see if she got the identity function f(x)=x as the result. She

explained why the root was not an inverse: "...you're not going to get x back out of it,

so that's how I determined it." Tracy used her procedural knowledge of inverse

functions and therefore correctly chose log as the inverse function of f(x)=10x.

But the root function appealed to many of the participants. About one-third of the

participants who answered the question (23 first phase subjects out of 63) used their

naive conceptual knowledge of what an inverse function was. These people used the

idea of "undoing" as their interpretation of inverse function. The xth root of 10 seemed

to them to "undo" what 10x does: In order to get 10x, one starts with 10 and then raises

it to the xth power. By taking the xth root of 10x, one gets 10 back. One subject, Bob,

composed log with f(x)=10x and got x, and then composed the xth root with 10x and

got 10. He then accepted both functions as the inverse function, even though the second

time he got 10 instead of x. The "feeling" that an inverse function gives back what you

started with (10 in our example, instead of x) lead many others to wrongly conclude that

root was the inverse function of f(x)=10x.

Accepting the root function as an inverse function because of its "undoing" appeal

created a dissonance: many of the participants also remembered from previous study that
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log was the appropriate inverse function and inverse function was unique. To solve this

uncomfortable situation, about one-third of those who answered stated that the log

function and the root function were both inverse functions for the given function:

f(x)=10x, since they were the same function. Jenine, for example, wrote: "I believe that

there is only one function. The root function and the log function are just two different

ways of representing the same function." In her interview she added:

...Log is a power and that's what a root is...It's just a different way of
expressing the same thing...

Jenine seems to think of root function, in this case, as the xth root of 10 ( 3t.jo. ) and of

log as a root, or a power, a different way to describe powers. This wrong conception of

log did not interfere with her ability to successfully solve regular log problems, as she

recalled, since these problems usually require only procedural knowledge of logarithms.

Conclusion

Exponential and logarithmic functions as well as power (as a special case of

polynomial) and root (power) functions are common as illustrations of theorems and

properties in mathematics. They are used as specific cases to clarify general properties.

Most of the prospective secondary math teachers who participated in the study did not

seem to have a good understanding of them. They did not understand the difference

between exponential and power functions and thought that taking the log and taking the

root were the same thing. In such a case it is not clear how these functions can clarify

theorems and properties. These functions are also an important part of the high school

mathematics curriculum The National Council of Teachers of Mathematics recommends

that college-intending students develop a thorough understanding of specific functions

including polynomial, exponential and logarithmic (Curriculum and Evaluation

Standards for School Mathematics, 1989). Teachers, therefore, need a thorough

understanding of these functions based on an understanding of inverse function. But, as
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this study shows, the participating prospective teachers seemed to have a fragile

knowledge about these functions and inverse function.

Inverse function, as any other concept, cannot be understood in one simplistic

way only. Understanding this sub-concept of the concept of function requires

understanding the general meaning as well as the formal mathematical, definition.

Perceiving inverse function as "undoing" is powerful on one hand but is not enough for

dealing with all aspects of the concept of inverse function on the other hand. This term

is too vague and not precise. So, a solid understanding of the concept of inverse

function cannot be limited to "undoing" only.

References

Ball, D.L. (In press). Prospective teachers' understandings of mathematics: What do
they bring with them to teacher education? Flementaty School Journal.

Curriculum and Evaluation Standards for School Mathematics. (1989). NCTM,
Virginia, USA.

Even, R. (1989). Prospective secondary teachers' knowledge and understanding about
mathematical functions Unpublished doctoral dissertation, Michigan State
University, East Lansing, MI.

Even, R., Lappan, G., & Fitzgerald, W.M. (1988). Pre-service teachers' conceptions
of the relationship between functions and equations. In M.J. Behr, C.B.
Lacampagne, & M.M. Wheeler (Eds.) Proceedings of the 10th Annual Meeting
of PME-NA, De Kalb, Ill, pp. 283-289.

Even, R., & Ball, D.L. (1989). How do prospective secondary mathematics teachers
understand the univalence of functions? Paper presented at the Annual Meeting of
the AERA, San Francisco.

Fischbein, E., & Kedem, I. (1981). Proof and certitude in the development of
mathematical thinking. In A. Vermandel (Ed.), Proceedings of the 6th
International Conference of PME, Antwerp, Belgium, pp. 128-131.

Freudenthal, H. (1983). Didactical Phenomenology of mathematical structures, D.
Reidel Publishing Company, Dordrecht.

Martin, W.G., & Harel, G. (1989). Proof frames of preservice elementary teachers,
Journal for Research in Mathematics Education. 20(1), 41-51.

Recipient of a Sir Charles Clore Post-Doctoral Fellowship.

125
44



INTUITIVE PROCESSES, MENTAL IMAGE, AND ANALYTICAL AND
GRAPHIC REPRESENTATIONS OF THE STATIONARY STATE.

CA CASE STUDY)
Rosa Maria Far fan, Fernando Hitt

SECCION DE MATEMATICA EDUCATIVA del CINVESTAV, PNFAPM, MEXICO.

In the present work we examine the view held by Mathematics
teachers at University level) on the stationary state. The
study was carried out during a process of research and
controlled teaching. The stationary state was characterized by
the intrinsic phenomenology of the concept arises from the need
of determining the stationary state of heat flux. The
observation method is that of case studies.
INTRODUCTION: Our study lies within the framework of a broad
research project aimed at the interpretation of Fourier's work

and its connection with the teaching of mathematics. In fact,

it is our belief that the formalization process undergone by
mathematics completely concealed heuristic ideas and processes

of major importance for the acquisition of concepts such as the

stament of physical problems aimed at the development of

mathematical abilities.

The wealth of heuristic processes in Fourier's work allows

us to think of research alternatives that might be applied to

the teaching of mathematics. In the first part of our research
we must necessarily plunge into the study of the history of
mathematics, especially for the period from late 18th century to

early 19th century, in connection with Fourier's work EFarfan,

19891 Another fundamental part is the study of processes

developed by Mathematics teachers when faced with problems of a

physical nature, showing a similarity with those approached by
Fourier. A third component is that of analyzing the behavior of
this same population, within a mathematical context.

In this paper, we will confine ourselves solely to the

second part of our research; i.e., we will focus our attention
to the analysis of processes developed by Mathematics teachers

on the face of a problem on heat transmission.
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CONCEPTS SUMMARY OF QUESTIONS

Draw a graph for the function of tempera-

ORAPHIC

Lure T t
(x) for time t

0
. Does its shape

ofollow a known pattern?.
REPRESENTATION What, happens to the temperature at each

point of the ring when t is "almost infi-
nite"?.Plot the corresponding curve (tem-
perature vs. radial position ).
How is this graph related with those you
have drawn for various times ?.

Can temperature at A be 10e-C ?.
Can temperature at C be 100°C ?.

STATIONARY What happens to temperature in the course
STATE of time ?.

What happens to temperature at each point
of the ring when time is "almost infinite"?
Does your graph Tt(x) follow a know pa-
ttern ?. 0
Suggest a method to find its formula. Su-

ANALYTICAL ppose you have the curve relating tempera-
REPRESENTATION ture T and position x for to,but you don't

have the formula. Can an equation be found
relating them?. Does it exist a formula re
presenting each curve at each time t?.That
is, Does it exist an analytical expression
T(x,t) which establishes the functional de
pendencies ?.

From now on, we will call Model MI the one which is related

to the explanation and the figure proposed in the questionnaire,

which is also related to the graph
M1

100

A B

In other words, in model Mk point A is next to the heat source,

and it has a temperature of 100°C for to.

We will call model Miz the one related to the drawing below,

our interpretation, which is also related on the right hand

side. In this model Mz, point A is a certain distance away from

the heat source, thus having a temperature bl6src..100°C at t°.
M2
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GRAPHIC REPRESENTATION AND THE CONCEPT OF STATIONARY STATE

In the table show below we can observe that 6 teachers drew

a graph which is related to model Mi. and the rest drew one

which relates to model Mz. Teachers 2 and 3 confused the

Distance vs. Temperature graph with the one relating Time vs.

Temperature. Teachers 6 and 7 confused the Distance vs.

Temperature graph with the one linking Distance vs. Time. It was

probably a mistake on the part of the researchers, not to have

used a different notation for the Temperature axis (i.e. C could

have been used, for instance, instead of T, to refer to Heat in

degrees Centigrade).

TEA
CHER
No.

ORAPHIC
REPRESENTATION

THE STATIO
NARY STATE
CONCEPT.

ANALYTICAL

FORMULA I

REPRESENTATION
METHODT
EQUAT I ON
FOR to

METHOD
FUNCTION 2
VARIABLES

T

1,210
1.,

1

.\\....:

>a

Temperature

at
greater r

less at B

Applying
success i
ve deri va
tives,and
Taylor me
thod .

By Taylor's
series.
T(x,t) .=

T (xo,to) +
OT(xi,to )h
Oxo

2 n,
,p,

..0-, ..

Temperature
is a cons-
tant(it rea-
ches an equi
I ibrium):the
co 1 dest
points recei

Not po-
ssible
..dis-
Lance
and ti-

I t can be
found,but
it is al-
most impo
ssible.

Yes, it do
es exist :

a relatio-
nship can
be estab 11
shed bet
ween Tempe
rature-Dis
Lance,

me vary at the
same time.

ye more heat until equilibrium
is reached. and

Temperature vs Ti me

3

If we cons i-
der the r i n-
gs to be in-
finite, T
will become
zero at too

For he-
at tra-
nsmissi
on, you
have a
s . 1 ine

No, It
may be
possible,
but using
a thermo .

for some .

Yes, it do
es exist ;
it invol -
v es part i-
al deriv a-
t i yes.l' ...,

......,..,
dot .. -4, A heat equi-
7-1...4 )14' 7.... .7-4." librium is
, 4,.. a.' ,./ reached ;1 .e.11,. 4,

there are no
y..I r I longer any

temperature
'' variations.

T (x)...

o

k ex

1 Regre-
ssi on.
2 Least

squares
3 Diffe-

rent ia 1 e
quat ions

This could
be done by
means of a
two

Tvari
a-

b le aylor
Series.
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TEA
CHER
No.

GRAPHIC
REPRESENTATION

THE STATIO-
NARY STATE
CONCEPT.

ANALYTICAL

FORMULA

REPRESENTATION
METHOD
EQUATION
FOR to

METHOD
FUNCTION 2

VARIABLES

5
20
5°4.,
6.

c. --e.. .

The points
closest to
the source
will remain
in equilibri
um; the more
distant ones

I could
find
the e-
quation
for the
stright
line
y-y=

...

By using
the Tay-
for Se-
ries try
to find -
the equa-
tion that
conformed

I should
thing so,
for the on
ly thing I

see is
that f
moves ver-
tically..-

A b 'will be al-
most cold. to the real thing.

6
tl-

il

AT Temperature
prsents a
maximun, and
from there
on, it will
decrease ...

Yes, .

there
are a-
proxima
tive me
thods,

I don't There are
remember, always ma-
but there thematical
does methods to
exist an conform...
equation.

6,7
and it will or the Taylor Series.

,,4.: .,0 tend to become standardized.

7 t4.3;
fui-./4...

...temperatu
re is the sa

IA me at every
..... # , point, when

t is almost
. infinite

Parabo-
la

T(x3=x 2

Yes by
comparing
with Tay-
lor's Se-
ries.

Yes T(x.t.)
= f<x>

f(x>+
f'Cx)h+...
I believe
it it be

.. 14one by applying Taylor's
can
Series

8

r It increases
4 at each po-

int, but e-
1

It would
be the

This formu
la can be
the expre-
ssion for
T(x):
T(x+h)=

y=
x preceding

... ventually an equili-
brium is reached, be
caude at the last.

formula:
1T(x)=
x

point. T(x)+T'<x)h+. ...

9

The time
will come

=---:--7-7:,..,.m when tempera
__,.....o Lure at each

point becom-
".c. i es constant t.

)

Yes.One
way is
by le-
ast squ
ares:
T<x)=a+

t

b-sincx
-

By.find-
ing the
min. of

n

S=E
i.

ITCx)
t

i. =

-a
2-sincx l

1

T(x,t)
To<x)+a

I
TA, (x) +. .+

a
n
T nAt (x).

T(x,t)=Iim
n -A CO

_

10

TA

i":

It tends to
p` (.4 become sta-

tionary,i.e.
to remain

OE constant, or
\-ow it would
....

. )reachreach the
A S limit.

Yes,the
curve .

resem-
bles
the

Yes T(x)=
TCx3+T'(x)does
Ax+T"(x)
Ax +...

Yes, it
exist

It is a
Fourier se

bachystocrone",
and with Taylor.

ries since
every curve
exponential
sin and cos
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TEA
CHER

ORAPHIC.
REPRESENTATION

THE srwrio-
NARY STATE
CONCEPT.

ANALYTICAL REPRESENTATION
T METHOD T METHOD

EQUATIONIFUNCTION 2FORMULA, FOR t, (VARIABLES

1

--'-----,------nr

.
..

pa
)

When time is
very large.
t illpet,Atuve
fort or each po-
int wi 1 I ha-
ye become

It is i Same ar-Lli 'Such a for
an expolswer as Hula does
nentialLabove.

._____
tlexis ...

curve : the re exist variation
approxiltative me- in time
thods.17position gives us

A b stationary . . la Differential Equation.

12 .--

.\
'--- - - +,...
-41"

-:14

J. ....--

.

.. b'ecause it
can .. ex-ilow ex-
t.. er na 1 1 v .

temperature
does not be-
come almost
infinite....
very great.

Yes, it
_resem-

b 1 es :

/ (x..b=
n

a .
e
x + .

Yes. It
can be
found by
means
of a two-
variable
Taylor 's
Series.

T here must
be a f ormu
la .. . by
means of
t wo-var i a-
b le Taylor
time and
distance.b x n+.

e4 s

Teachers 3. 5.. and 6. associated a straight line to the

function. for C. Teaches 5 showed a surprising feature: he

changed the origin of the vertical axis. thus reversing the

scab': we interpret (from his graphs) that he is, indeed,

thinking of a family of bounded functions. However, in the

question related to t tending to infinity, he draws the

following graph:

A
Teacher I reverses the curves and plots Distance vs. Time.

From his drawings it can be deduced that temperature increases.

Nevertheless, when explicitly asked about temperature as t tends.

to infinity. his answer is that "temperature is the same at all
-r

points ", and he proposes the following graph:

b

i. e. temperature at -1 is less than temperature at 8 for every

instant in time. Another contradiction is perceived in the

answer given by Teacher 9. who wrote that when t grows

sufficiently large a level of equilibrium is reached it the

temperatue of the solid body. Yet., in his graphs when t grows
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so does temperature, and he does not indicate any boundary.

Teacher 12 is in a better position than his colleagues, for
he does not incur in a contradiction [Hitt, 1989]. He is
consistent in his error when he points out (both in the graph
and in his explanation) that temperature will become great as t
tends to infinity.

Thus, we can be certain that some teachers (those that fall
in contradictions) need to strengthen the interaction between
the image conception they about the physical phenomenon, and
their written interpretation.
ANALYTICAL REPRESENTATION

These teachers received strong instruction concerning the
development of functions through the use of Taylor's Series. In
fact, in a large number of answers (8> it is thought that a
function can be associated, to the graph. they found, using
Taylor. They did not., realize that they would have to be in
possession of the function, either to approximate it. or to
develop it in its Taylor's Series.

Teacher 2 and 6 pointed out: "it is almost impossible, but
a formula exists", and "There are always mathematical methods
for approximating", respectively. These statements suggest that
Mathematics is so powerful that no matter how difficult
something might be, we can always construct it. CVinner, 1983]

points out something similar, concerning his students. He

mentions, about the question: Is there a function that
corresponds 1 to each positive number, corresponds -1 to each
negative number, and corresponds 0 to 0? that "functions (which
are not algebraic) exist only if mathematicians officially
recognize them (by giving them a name or denoting them by
specific symbols). This view was expressed by answers like,.
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No. as a matter of fact perhaps there is such a function but I

do not know about it"

COMMENTS

There is little interaction between the intuitive ideas and

mental images presented by these teachers in their first

drawings and their representations of the same problem in a more

general context. The need is seen to close the gap between these

situations. Doing so is of fundamental importance, considering

that some of the teachers were in such -a contradictory

situation, without their being aware of it.

Concerning the mathematization process of the physical

phenomenon, we can infer that their general knowledge of

Taylor's Series played a very strong part, in that such

knowledge prevented them to properly associate their intuitive

ideas about the behavior of the physical phenomenon, to formal

mathematical ideas. In some cases, this teachers explicitly

proposed a particular function, but when passing to the general

context they did not take into account their own initial

proposals. The specific case is ignored when passing to the

general case.
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THE ROLE OF CONCEPTUAL ENTITIES IN LEARNING MATHEMATICAL

CONCEPTS AT THE UNDERGRADUATE LEVEL

Guershon Harel

Purdue University

James J. Kaput

Department of Mathematics, Southeastern Massachusetts University

and

Educational Technology Center, Harvard University

In this paper we begin to examine the role of cognitive entities in the learning and

use of certain ideas important to the undergraduate mathematics curriculum

where the conception must act as a mental "object" in comprehension or

reasoning processes. Depending on specifics of the situations, these include the

idea of function, limit of functions of two or more variables, differential and

integral operators, cosets in vector spaces and groups, among others. We

attempt to distinguish between the general function of cognitive entities as means

for overcoming natural working memory constraints, via chunking or

encapsulation processes, and their more specific roles in certain types of

mathematical thinking and certain concepts.

Introduction

We have all had the experience of thinking in terms of mental objects. For example,

suppose one asks if a vector space V and its double dual V** are isomorphic. At one level,

one is asking about the "objects" V and V**, and to begin describing an isomorphism, one
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may go on to describe a correspondence between respective vectors in the two spaces, which

again, are treated mentally as objects, although they might be n-tuples or matrices, for example.

The aim of this paper is to begin to discuss in somewhat more precise terms the processes of

using and building such mental objects and their roles in helping us to understand ever more

complex mathematical concepts. In a subsequent paper (Kaput & Harel, in press) we will

extend our discussion to include the role of notations in the processes of forming and applying

mental objects.

Greeno (1983) defines a conceptual entity as a cognitive object for which the mental

system has procedures that can take that object as an argument, as an input. The cognitive

process of forming a conceptual entity has been called "encapsulation" (Ayers, Davis,

Dubinsky, and Lewin, 1988), or "entification." Ayers et al. view this process as an instance of

"reflective abstraction" (Beth and Piaget, 1966), in which "a physical or mental action is

reconstructed and reorganized ona higher plane of thought and so comes to be understood by

the knower" (p. 247).

The construction of function as a conceptual entity is an example of the entification

process (Thompson, 1985; Harel, 1985; Ayers et al., 1988). One level of understanding the

concept of function is to think of a function as a process associating elements in a domain with

elements in a range. This level of understanding may be sufficient to deal with certain

situations, such as interpreting graphs of functions pointwise or solving for xin an equation of

the form f(x)=b, but it would not be sufficient to deal meaningfully with situations which

involve certain operators on fuctions, such as the integral and differential operators, as we will

see later in this paper. For the latter situations, the three components of function--the rule, the

domain, and the range--must be encapsulated into a single entity so that these operators can be

considered as procedures that'take functions as arguments. Incidentally, a formal definition of

a function as a set of ordered pairs, a mathematical entity, does not appear to play a role in such

situations when would one conceive of a function as a set of ordered pairs in the context of

applying a differential operator to that function?

The construction of conceptual entities embodies the "vertical" growth of mathematical

knowledge (Kaput, 1987). For example, at lower levels the act of counting leads to (whole)

numbers as objects, taking part-of leads to fraction numbers, functions as rules for

transforming numbers become objects that can then be further operated upon, e.g.,

differentiated. It complements the kind of "horizontal" growth associated with the translation

of mathematical ideas across representation systems and between non-mathematical situations
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and their mathematical models.

Greeho (1983) examined the role of conceptual entities in understanding and in problem

solving. He conjectures four functions of representational knowledge that involve conceptual

entities: forming analogies between domains, reaoning with general methods, providing

computational efficiency, and facilitating planning. Greeno offered empirical findings that are

consistent with his conjectures; these findings deal with elementary mathematics -- geometry

proofs and multidigit subtraction--as well as physics, puzzle problems, and binomial

probability. He also suggests that instructional activities with concrete manipulatives can lead

to an acquisition of representational knowledge that includes conceptual entities. Recent work

by Dubinsky and Lewin (1986), Dubinsky (1986), and Ayers et al., (1988) demonstrates how

computer activities in learning mathematical induction and composition of functions can

facilitate the construction of these concepts as entities.

Rotes of Conceptual Entities

In this section we will discuss the concepts of function, operators, vector-space, and

limit in terms of the role that conceptual entities have for alleviating working memory or

processing load when concepts involve multiple constituent elements, facilitating

comprehension of complex concepts, and assisting with the focus of attention on appropriate

structure in problem solving. The first two of these psychological necessities will be

discussed below in turn. Space limitations prevent an examination of the third.

Working-memory load

One psychological justification for forming conceptual entities lay in their role in

consolidating or chunking knoWledge to compensate for the mind's limited processing

capacity, especially with respect to working memory. To avoid loss of information during

working memory processes, large units of information must be chunked into single units, or

conceptual entities. Thus, thinking of a function as a process would require more working-

memory space than if it is encoded as a single object. As a result, complex concepts that

involve two or more functions would be difficult to retrieve, process, or store if the concept of

function is viewed as a process. This is true for many concepts in advanced mathematics.

Imagine, for example, the working-memory strain in dealing with the concept of the dual space

of the nXn matrices space if none or only a few of the concepts, matrix, vector-space,

functional, and field are conceived as total entities.

Comprehension: "Uniform" operators versus"point-wise" operators

Despite the heavy working-memory load involved in understanding the dual space of the
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nXn matrices space without most of its subconcepts being entities, it is still possible to make

sense out of it, at least momentarily. In some situations, however, the justification for the

formation of conceptual entities is more than just a matter of cognitive strain that results from a

memory load. In such situations comprehension requires that certain concepts act mentally as

objects due to an intrinsic characteristic of the construct involved. Examples of such situations

include those which involve the integral or differential operator. These types of "uniform"

operators cannot be understood unless the concept of function is conceived as a total entity. We

distinguish these from other types of operators on functions which we could be termed

"pointwise" operators, and for which there is no need to conceive functions as objects.

Operations with functions--such as sum and composition--can be treated as "pointwise"

operators; the cognitive process of understanding these operators involves the conception of a

function as a process acting on elements of the domain. For example, in constructing the

composition of two functions f and g, say fog, one must first perform the process g on an

arbitrary element x of the domain, generating a result g ( x), and then performing the process of

f on that result to obtain f (g ( x )) , all conceivable as acting on individual elements of the

domain. These two separate operations are coordinated to produced a new process, which then

it interiorized, and the resulted in a new process fog (Ayers et al., 1988; p. 247). Similarly, in

constructing f +g, for every input x, the outputs, f ( x ) and g ( x ), are produced to construct the

sum, f(x) +. g(x).

In "uniform" operators, in contrast, the point-by-point process is inapplicable. For

example, to understand the meaning of P f(x)d x as a function, it is necessary to think of P as

an operator that acts on the process x -> f(x) as a whole to produce a new process t ->

Jtf(x)dx. It is the awareness of acting on a process as a whole--not point -by- point -that

constitutes the conceptions of that process as an object.

Mathematically unsophisticated students attempt to interpret "uniform" operators as

"pointwise" operators apparently because they cannot conceive of a function as an object.

Consider the derivative operator. Our experience in the classroom suggests that many students

understand that 1 ( x ) means: for the input x there is the output 1( x ) , and for that output we get

the derivative f' ( x) . This undeistanding is likely the conceptual base for many students'

answer to the question,
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to be:

Find the derivative of the function, f ( x )
sinx if x # 0

1 if x = 0

cosx if x x 0
(x)=

0 if x = 0

Interpreting "uniform" operators as "pointwise" operators is quite common among

students, not only with the concept of derivative. It likely has to with students' limited

understanding of the concept of variable. Apparently, this misconception is inferred by

students from the formal computations that are used to introduce algebra in high school,

especially evaluation of expressions for single values of x and the solving of equations for a

single unknown (Kaput & Sims-Knight, 1983) in which the true notion of variable is not

employed because variables take on only single values. For them, a variable is "an unknown

number."

Comprehension: the case of object-valued operators

To begin with, the real-valued function f(x, y) of two real variables can be interpreted, as

a process, in two ways. The first is amenable to the process-conception of function: f(x, y) is

thought of as a process mapping points on the plane, (x, y), into points on the real line, f ( x ,

y ) ; thus, students who possess the process-conception of function would likely have no

difficulty dealing with this interpretation.

In a second interpretation, f(x, y) is a process associating points on the real line, x, with

functions, 1( y ) , which are themselves processes from the real line into itself. Like the

"uniform" operator in which a function is thought of as an input-argument, in this interpretation

a function is thought of as an output-A'rgument. Cognitively, thinking of a function as an

output is not different from thinking of it as an input, in the sense that in both cases a function

is treatedas a variable and as an instantiation of "something else" which is viewed as an entity.

This "something else" is, in the "uniform" operator case, the noun input; and in the second

interpretation of f(x, y) is the noun, output.

This analysis, which has to be empirically substantiated, is supported by our informal

observation while teaching undergraduate mathematics classes the concepts of double limit,
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i b)f(x, y), and the iterated limit, I i mx_>.1i my.,bf(x, y). As some textbook authors

indicated (e.g., Munroe, 1965; p. 108), we observed that while computationally the iterated

limits is easier than the double limit, conceptually the iterated limit involves a more

sophisticated idea, which causes difficulty for students. In stating and proving certain

theorems on iterated limits (e.g., theorems concerning conditions on the equality between this

limit and the double limit), the analysis of I i aI i my.f(x, y) as being a composition of the

following three mappings (see Figure 1) is inevitable:

1. M: x->fx( y) , whose domain is a set of numbers and whose range is a set of functions;
2. I i fx( y) -> f ( x ), whose domain and range are sets of functions;

3. I i f(x)->c, whose domain is a space of functions and its range is a set numbers.

Students responses and questions indicate a difficulty in dealing with aspects concerning the

operator M, which, as indicated earlier, requires the object-conception of function. While the

operator M must be understood as an object-valued operator, the other two operators, I i my.,b

and I i rnx., , can be viewed in two ways determining different levels of understanding the

concept of iterated limit. In one way I i My.>b and I i ma are uniform operators acting on

objects which happen to be functions. This level of understanding, although desirable, is not

achieved by an average undergraduate student, who usually views these limits, and the concept

of limit in general, as pointwise operators.

The limit of function is another example of a pointwise operator. To understand this.

complex concept, many clusters of knowledge about different concepts in mathematics are

required. We will not attempt to analyze this knowledge in this paper; however, the process-

conception of function is sufficient (and necessary) to understand this concept. It is so because

I i m,,af(x)=L involves the dependency between the behavior of the numbers "near" a, x's, or

inputs of f, and the behavior of their outputs, f ( x) 's, "near" L

Beside the iterated limit, the undergraduate mathematics curriculum is full of situations

that involve object-valued operators. For example, those which concern parametric functions,

such as f(x)=ax+b, f(x)=sin(ax), f(x)=Iogxx, etc., or parametric equations involving such
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functions. In these situations the correspondence between the parameters and the function, or

the equation, constitutes an object-valued operator. In (Kaput, 1986; in preparation) we report

on an extended study of secondary level students whose task was to determine an algebraic rule

that fit a student-controllable set of numerical data. Their behavior allowed a clear and stable

decomposition of the group of students into two sets, one of whom consistently used a

pointwise pattern-matching process, mediated by natural language formulations of their

proposed "rules," while the other searched for and applied a parametrically mediated

formulation of their proposed rules. The latter, for example, would look for constant change in

the dependent variable, identify this as the "m" in y=mx+b, and proceed from -here. For them

the process was a search for parameters. In effect, they were dealing with a space of functions

(albeit a limited one), whereas the other group of students conceptualized the task as a

pointwise pattern match.

Another common example; related to the vector space discussion above, involves the

construction in abstract algebra of the quotient object associated with a "normal" subobject,

e.g., in the case of groups. The cosets must be conceived as objects if they are to participate

as elements of a group. However, the existence of a "representative element" for a cosec,

where the operation defined on cosets can be given in terms of an operation on their

representatives, makes it possible to deal successfully with many aspects of the quotient

group on a symbol manipulation level without treating the subsets of the group as objects, or

even as subsets. Students' inadequate conceptions are revealed when one asks them to

attempt to create a group using a non-normal subgroup's cosets they often cannot

understand why the subsets "fall apart" when they attempt to multiply them together as sets,

or by using representatives.

Reflections

This paper is but the briefest introduction to a complex set of issues, most of which

were avoided because we concentrated in getting some specific examples on the table for

discussion. We likewise avoided significant examination of empirical findings that may lie

behind some of the assertions made. However, we hasten to add that we know of relatively

little empirical work done from the perspective of this paper beyond that which was cited.

Much is needed. In subsequent papers we hope to clarify the roles that different notations

may play in entity formation and application, as well as to attack perhaps an even more subtle

matter the difference between a well-formed schema and a cognitive entity.
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Mathematical Concept Formation In the Individual.

Lena Lindenskov
Roskilde University Center
Denmark

The project desribed here discuss how conceptions such as
Etnomathematics may inspire the study of learning advanced
mathematic in industrialised countries. The project involves
interviewing four pupils at work. The results give support to the
framework of rationales of learning. It will be explicated how
pupils' learning processes and learning results can be seen as
organic results of the individual's view of teaching and learning
mathematics and of the individual's specific wishes and needs in
relation to the content and the structure of mathematics
instruction in the school.

FIELD OF INTEREST.

The importance of conceptions such as Ethnomathematics, natural
mathematics and Folk Mathematics is evident in analysing
education in the Third World. In industrialised countries a
number of curriculum planners and teachers are inspired by these
ideas. Most of the attempts to utilise the ideas concern education
on lower level and adult training in elementary mathematics.

In this project the field of interest is to analyse teaching and
learning of advanced mathematics in industrialised countries.
What part could conceptions such as etnomathematics play in the
analysis ? What inspiration is produced by such conceptions and
how should they be developed with special reference to advanced
mathematics in industrialised countries ?

We have no investigations that help us identify what may
correspond to etnomathematics when looking at advanced mathematics
in industrialised countries. In this project the conception of
everyday knowledge is used with the aim, firstly, of grasping not
only everyday thinking tools corresponding or contrasting to those
found in mathematics, but also knowledge about parts of the world
that are in correspondence to or contrast with the way mathematics
is applied to those parts. Secondly, the aim of introducing the
conception of everyday knowledge is to stress the focus on what
happens and what is comprehended outside organised instruction.

It is unquestionable that the relationship between everyday
knowledge and mathematical conceptformation is of a qualitatively
different nature depending on whether the subject under
consideration is below or above what we could call the Arithmetic
Border. As mentioned above, our concern is to draw attention to
the levels above the Arithmetic Border, and we have chosen to
investigate the level just above that border.

The project will be searching for
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a - specific kinds of structures and contents in everyday
knowledge in a country like Denmark, and for
b - specific features of the relation between everyday knowledge
and mathematical conceptformation, which

1.- can either serve as butterfly-nets, i.e. nets for grasping
mathematical concepts
2.- or will function as blockage for the development of
mathematical concept-building.

In the former case everyday knowledge, respectively the relation
between the two areas, may potentially have a productive function
for the learning of mathematics. If it were possible to make
explicit or describe in some way such everyday knowledge, that
could be an element in developing teaching methods based on equal
dignity-relations between the participants.
In the latter case everyday knowledge, respectively the relation
between the two areas, could have a destructive function for the
learning of mathematics. If again it were possible to make
explicit or describe this type of everyday knowledge we might be
able to formulate some of the psychological and cognitive reasons
for some pupils learning-problems.

Investigating the relations between the two areas does not
constitute a field of well-defined problems, but rather certain
optics on the problem field of mathematics education.

This optics is across prevalent theoretical considerations like:
Rationales of learning,
Sociology of Youth,
Cognition,
Needs of qualifications,
Teaching,
Theory of transfer.

The optics is capable of throwing spotlight on problems of
several sorts. Problems such as
- blockings
- learning difficulties
-sorting
-discrepancies between "the matter taught" and "the matter learnt"
predictions of future qualification needs and demands
-poor transferability.

Simultaneously the optics carries the seed of new principles of
how to structure cources in order to remedy some of the problems.
Perhaps it might be possible to get to know more about how to
- get rid of blockings
- clarify sorting mechanisms
- indicate keys for particularly productive modes of understanding
-provide opportunity the acquisition of more future orientated
qualifications.

PLOT AND DESIGN OF RESEARCH
Teaching and learning mathematics give birth to problems of high
complexity. I have been searching for an avenue of investigation
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capable of capturing this complexity without destroying or
removing significant features - yet, it must be possible to
restrain and to communicate the plot and the method.

I chose to approach individual learning of mathematics as it
takes place in ordinary instruction. I chose to investigate
individuals in the start of the gymnasium, because changing
school may illuminate one's learning style and specific learning
problems.

My endeavour has been two-sided:
a) It has been my wish to describe and analyse the individual's
preknowledge from the former school, his/her attitudes to school
and to the subject of mathematics, something I call his/her
"field of attention", and the development of mathematical
knowledge and skills. I wanted to describe and analyse processes
of learning as well as products.

b) And I wished to develop a method, which I call "interviewing
pupils at work".

This method consists of the researcher being together with each
individual, after school without a fixed time-table (but max. two
hours). During this being together several instruments are played:
- the researcher interviews the pupil about attitudes to
education, school, subjects, specific classes, learning habits,
learning methods
the pupil thinks loud while working with textbook and exercises,

- the researcher questions about specific issues/topics,
- the researcher presents mathematical explanations and methods
and listens to the pupil's reaction,
- the pupil asks questions,
- the pupil suggests which exercises to work through and choose
which topics to discuss,
- spontaneous conversation.

The being together must run through a relatively long period in
order to establish possibilities of recognise of development and
changes and in order to establish opportunity to become aware of
and correct researcher's possible wrong perceptions of what is
going on. In this case it was 4 months in autumn 1989. In addition
I followed some of the mathematic lessons as an observer.

I chose four 16-17 years old from the same class. They are all
above average in their age group as regards interest, knowledge
and skills, as they follow the danish "mathematical gymnasium".

I Wanted to choose four pupils differing in their ways of
learning. I made the choice after letting all the, pupils in the
class answer a quetionnaire. I had constructed the questionnaire
in order to obtain information about :

A. the level of support versus press from the family
B. pupils' experiences of success and failure as something stable
and inner-grounded versus something unstable and grounded on
external factors.
C. the individuals' own criteria for gaining understanding and
knowledge.

63

143



RESULTS

My being together with the four pupils has produced a very rich
fund of empirical knowledge concerning cognition in relation to
mathematic as it takes place in the individual.
Some of the main results may be given in statementform as follows:

1: Firstly, you find a strong consistency throughout a person's
view of mathematic, rationale of learning, way of working with
the subject and the character of the concepts built by that
person. The result provides a corroboration for the validity and
usefullness of the theoretical frame-work Rationales of learning,
and suggests a detailization.

2: Secondly, potentials in pupils' conscious, but non-stated needs
and wishes towards teaching-content and teaching-style can be
made public, and it is my thesis that these potentials may serve
as a building stone for new manner of teaching learning.

3: Thirdly, the selection proces in mathematic instruction, which
divide the pupils in those with succes and those without,
functions partly through invisible mechanisms.

4: Fourthly, it is meaningsfull to see the learning of mathematics
as a vehicle for stabilization or destabilization of self-
confidence.

5: Fifthly, some of the basic difficulties of the pupils are
grounded on specific features of the relations between everyday
knowledge and mathematical concept formation.

Finally the results as a whole make it possible to formulate
conjectures of how important features, such as examinations and
exercises, could be changed in order to fulfil the idea of
competence-constructing, democratic, equal-dignity mathematical
education. The challenging problem then becomes how does an
education following this guidelines relate to the future
qualification needs.

0

RATIONALES OF LEARNING - The engine that creates the dynamics.

In what follows I shall present the first results from my
investigation.

During the four months it became possible for me to see important
elements of the pupils' rationales for learning breaking through
every of their concerns towards working with mathematics. It is
these observations that convinced me of the validity and the
usefullness of the frame-work. The rationales of learning are so
to speak the engine that creates the dynamics.

The four pupils represent four qualitatively different
specifications and mixtures of Rationales. In the following the
pupils are called Ann, Paul, Mary and Michael.
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Ann is fascinated by two features of the mathematics:
-she is fascinated by the way maths produces its results. Shelikes the known staging with figures and solutions as steadymembers of a theatrical company, and she likes that assertions soobviously happen to be either true or false.
-she likes the possibilities offered by mathematics of gettingto know certain things as immediately obvious. In learning foreignlanguages you just have to try to remember, she tells me, whereasin mathematics you sometimes "see the logic". This two-sidedfascination constitutes her S-Rationale.

From the very beginning in the gymnasium it is obvious that Ann isshocked. The speed is too high for her, and the level too.She isnot doing as well as she expected. The low level of her ownability becomes her main concern. She has to repress her wishesto see mathematics as "logical". She becomes thrown upon toconcentrate on searching for important features to remember. Inreading the textbook she looks for emphazised and framed-inelements, and otherwise she just "reads from the bottom to theend".
Her dominating wish "to do well" does not constitute any internalfilter, so this wish does not afford her any help in her help-demanding position.

Using the definitions of S.Mellin-Olsen I suggest, that becauseAnn's S-rationale does not get any response from her newsurroundings, and because of her learning problems, her I-rationale becomes dominant. Unfortunately it does not help herprobleMs.

Paul is engaged in searching tasks that are ready to beaccomplished, tasks that the institution "gymnasium" asks him toaccomplish. In addition to searching for tasks, he is also lookingfor rules to be useful in solving the tasks. What it is allabout is of minor importance. His interests in mathematics areborn as mainly operational, not orientated towards understandingor criticism. His interest in Reality is just the same.

Paul is engaged in building upon his very rich fund of knowledgeof the rules of the game and of the standard behaviour in school-math. He generalizes his fund of data to generate principles ofthe system, as for instance
"in most exercises it is appropiate just to use the most recentlydiscussed frames and rules",
"exercises with per thousands are solved by dividing the smallestnumber with the biggest number",
"if I get a solution containing more than three decimals, then Ihave made a mistake",
"if the figures 120 and 15 occur in the same exercise, you shouldin most cases divide 120 by 15".

Pauls concepts are heavily affected by his interest in action.His concept of division of fraction by fraction, for instance, isgoverned by rules, formulated
as manipulations of symbols.

Using the frames of S.M.0 I shall suggest that no antagonismexists between the S- and the I-Rationales. They are ratheridentical.
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Mary is engaged in searching for new ways of seeing offered by
mathematics. Asked about which elements were the most fascinating
in the first four months she mentions features that lie outside
her previous knowledge and outside her previuos imagination of
things mentally created.

She always reflects upon definitions. For instance her reflections
on the definition of a function, which is an analogy to a feature
in the everyday world : the prices of articles in a grocery, where
every article has onen and only one price - while it is possible
to find examples of prices given to more than one article. When
I asked her why she is performing these reflections - whether the
teacher, the textbook or I ask her to - she answers, that she
cannot find of any other way to cope with the concepts. It is
beyond questioning for her just to read, doing nothing else.

She dislikes exercises demanding several calculations, unless she
can connect each step of the calculations with something she finds
meaningful, but it is of no importance whether the meaning is
inner- or extra-mathematical. She is, however., disappointed of
the inferior power towards Reality offered by the newly learned
mathematics. She thinks she learns too little about the Real
World.

Mary is marked mainly by her S-Rationale which is constituted by
two different interests: her interest in getting to know new ways
of seeing and her interest in getting to know about the world
outside the school. The former interest is partly satisfied in the
course, the latter is not.

Michael is engaged in searching for the meaning of mathematics.
His thoughts circulate around questions like : " Why this
definition ? Why this concept ? Why equations ? Why proofs ?"
If he is finding no satisfactory answers, he is not able to go on
working. Not every kind of answer satisfies him. Answers telling
which type of exercises could be solved by the mathematical
tools taught to him will not meet his interests and curiosity.
He has a feeling of mathematics as a fund of knowledge filled by
meaning, and he loves to participate in lifting a corner of the
veil covering that meaning. He assumes that all mathematicians
have a clear sight of this meaning, and he feels deserted by the
mathematical culture, which does not let him know it.

For him the most fascinating elements in the first four months
of the course is the use of the new methods to problems partly in
the courses of mathematics, partly in the courses of physics. He
is creative himself in posing problems. He creates problems
concerning control of the formulas towards reality, and he likes
to "become aware of my own ability to check the scientific
results", as he puts it.
Michael got his first meeting with proofs in the gymnasium. He
really wants to know about this new aspect of mathematics, but he
is bound to interprete the task according to his present view of
mathematics and according to his present view of reason. His
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interpretation of the proof of the Theorem of Pythagoras iswhether or not a specific triangle is right. The way of teaching
the proof and the way of formulating the task to be done by thepupils give Michael no help to grasp the new orientation ofmathematics provided by the concept og proof.

His rationales of learning are primarily social, and areprimarily built upon his interest in getting to know the meaningof mathematics and this is grown inside his everyday conception
of what is meaningful and rational.

SUMMARY AND FINAL COMMENTS

The project desribed here gives support to the framework ofrationales of learning. It demonstrates the existence of specialwishes and needs in the individuals in relation to the contentand the structure of mathematics instruction in the school. Thesewishes and needs dominate the individual's choice among themanifold of possible ways of coping with the school.
These wishes and needs also determine what kind of Activity theindividual chooses to be engaged in, they determine how theindividual interpretes the tasks presented to him/her, and theydetermine how the individual participates in Activities.
Each pupil seems to think that his or her way of interpretationand participitation is natural and the only existent one.

The relative weight of S-rationales towards I-rationales wasastonishing high.
The S-rationale can be detailed towards the different basicgenerating factors.
It is obviuos that the school only provides feeble correspondenceto the S-rationales. The reasons for this are complex. Part ofthem consist in the fact that the school does not know about theimportance of the rationales and does not give attention to therationales of the individual pupils.

This project implies that the S-rationales are wowen together withthe individuals' everyday knowledge about what mathematics andrationality really is.
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PUPILS' INTERPRETATIONS OF THE LIMIT CONCEPT;

A COMPARISON STUDY BETWEEN GREEKS AND ENGLISH.

JOANNA MAMONA DOWNS

LRDC, UNIVERSITY OF PITTSBURGH

Pupils from English and Greek schools at preuniversity stage were asked two
questions on the nature of limits on the real line. Their responses were examined for their
main conceptual formations on the subject, and different trends were identified between the
pupils of the two countries. The English tended to use infinitesimal reasoning, whereas
most of the Greeks were adroit in using standard procedures (available to them bid not to the
English because of their pedagogical background). Thus the English have a psychology of
the "continuum" that seems to be closer to the Leibniz Cauchy model than to that of
Weierstrass; the Greeks most accept the Weierstrass model but not without conflict

sometimes with the "dynamic" approach, suggesting that thi latter is closer to their
intuition.

This research is extracted from a wider work (Mamona,19871 which deals with students' interpretations

of some concepts, especially that of limit, met in a rust course of Real Analysis; (By the term of Real

Analysis, we mean the classical development, essentially as G. H. Hardy would have understood the term,

exemplified in his book (19081, and not the topological one based on set theory and on the notion of mapping

of one topological space into another). In this paper, we are interested in how English and Greek pupils in their

final year in school before entering university (typically 17 years old) think of limits and the real continuum. A

comparison between the nationals is interesting in that the English have no formal instruction about limits on

the real line, contrary to the Greek case. We find the English use "infinitesimals" which often confounds the

completion of a limiting process, whereas the Greeks sometimes display difficulties in using formal symbolism

and reasoning, suggesting that little insight is given by the strict definition. We aim to study these traits in

mote detail.

Because of the special place of the concept of limit in mathematics as being almost symbolic of the

first cross-over from naive mathematics to rigour, it has attracted a fair amount of attention in educational

research. Sierpinska 09851 focused her attention on the "epistemological obstacles" relative to the notion of

limit. Tall and Vinner (19811 described "concept images" of limits which are approximations made by the
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subjects to the formal definition. The research discussed here overlaps with these and similar works; however.

this paper stresses how important the background of a pupil is in influencing his/her approach.

METHOD

We gave 20 English and 20 Greek pupils at their final year of school before entering university a

question sheet that contained the two questions I and 2 below, amongst other questions involving limits.

lin/
x5 -25

I) Is O. 999...=I? and 2) What is the limit ?x>2 x-2

We picked out these questions for this paper because the responses to these were particularly rich. It should be

said that for 1) and the Greeks, the question "Is 033.... I?" was included.

Our analysis of the responses is not quantitative; our sample is small and categorization is too clumsy

to be effective in partitioning responses with only subtle differences. We simply try to identify the influences,

prejudices and lines of thought suggested in the data, and we contend that the sources of each can be

satisfactorily explained. From this it can be understood that each major conceptual formation may be called

endemic to a population with a certain background, and although a particular subject may not use a particular

approach in one question, he/she is still liable to use it in another. In this way, we think most of these

phenomena are so widespread that any experienced teacher would recognize them straightaway just from his/her

experience: their exact relative frequency is of little import. We conserve our time more to portray the

problems revealed and go some way in discussing their causes.

RESULTS

(DThe First Ouestiou

For the English pupils:

"Is the statement 0.999.... I true or false? Give reasons for your answer."

For the Greek pupils:
1

"Are the statements 03 3
33... and 0.999... = 1 true or false?"
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A. A Decimal Expression for a Number Is Unique.

A prejudice that can be expressed in very general terms; it is that any representation is faithful, or, in

other words, if objects have different representation (especially in the same,system) then they are

different. So, in our case, 0.9 does not equal 1 simply because of their symbolic forms. It is difficult

to find explicit evidence of this, but we feel as a subconscious influence it is quite widespread. The

most suggestive responses are a couple that argue that a number given by an infinite decimal expansion

somehow is different in character from a fraction, or is somehow less "concrete": "...in 0.333... the

number 3 recurs an infinite number of times, so 0.3 cannot be the same as the fraction 1/3." or

"... the number 1 and 1/3 have a definite value but 0.333 .. . and 0.999... cannot be concrete."

B. 0.9 is an on-going sequential process.

This is to say that 0.9 must be constructed by an unending process of adding a 9 to what you already

have, starting with 0.9. This process is ruled by time; every step has a least interval of time for it to

be performed. Key words to look for are "always," "never reaching" when seeking for evidence of this

approach, e.g., "The statement is false as although in the limit it may be said that this is true 0999

would never actually reach 1 but would always be a very small amount less than 1" or "The statement

0.999... = 1 is false... there will always be the .000 ... 1 which has to be added to make it up to

C. Infinitesimal Reasoning

The response placed in part B are relatively few; the remainder seems to perceive 0.9 as not needing

construction, or that 0.9 is the final result of an infinite procedure. Any sequence used is completed

and not ongoing. However, there are two major ways a sequence is regarded as completed; one is by

limit (part D below) or by infinitesimal reasoning. The latter says that the difference 1 - 0.9.0

becomes closer to 0 as k increases, and when the process is completed the difference becomes

"infinitely small" but not 0.

Examples: "0.4 = 1 is false since the difference between the two is 1/infinity, which although

infinitesimal is not zero", or
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"The numbers 0.333. . . and 0.999. . . approach the numbers 1/3 and 1 "infinitely" near, but they

cannot reach them."

D. Explicit Usage of Limits

Usual successful application of the rule to fmd the limit of a geometric series, once the equality

0.9= -L was recognized. However, awkwardness was obviously evident in using notation, and
10n

no one attempted "e - 8" reasoning.

Finally beyond the above four main ways of dealing with the limit in the discrete case, three other

different approaches appeared which are worth mentioning:

1. Usage of the "algebra" of infinity as in the answer: "yes, it differs from 1 by which is zero."

2. Approximations, i.e., the more practical-minded pupils accept the equality on the grounds of rounding

up approximate values, in almost the scientific spirit of getting more and more accurate

"measurements" consistent to a desired result. For example the answer: "0.9 = 1 is true since all

calculations are rounded up".

3. Symbolic "juggling" where operations are conducted-on infinite decimal expansions: for example,

"let a = 0.999... >10a =9.999... > 10a-a=9> 9a = 9 > a = 1, so 0.999... = 1"

For this answer, (and others similar to it), we think that though resourceful and flawless, is however a

bit contrived, it gives no indication of why the answer is achieved, there is a sense almost of accident,

rather than logical inevitability.

We highlight now the differences in "tone" between the Greek and the English responses. For the

majority of the English pupils 0.9 x 1. The prevailing reasoning was of an infinitesimal character. The pupils

expressed their intuitive feelings of how, in a dynamic procedure, the 0.9 will get as close as it can to 1. On the

other hand the Greek pupils were about equally divided between those who did not accept the equality 0.9=1

usually because of the form of the actual numbers 0.9 and 1 (rationality-irrationality, 0.9 not quite accepted as a

number), and those who gave a strict justification of 1 being the limit of 0.9 (sometimes impressive for their

inventiveness and basically correct reasoning). Even amongst the latter there remains an uneasiness that 0.9 in

itself can represent a limit, e.g. "In other words it would be better to write lim(0.333...) = 1. The same for
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urn 0.999...=1" ['better than just writing 0.333...].

(Ill The Second Ouestion:

Find the urn
x - 2

For this question, there were just two main conceptual formations, one used almost exclusively by the

English and the other by the Greeks. Because of this, our description from the start is in a format comparing

the two groups. We give a representative answer from each group followed by a commentary on them. (We also

give an extra answer from the Greeks which was particularly impressive).

Representative English Answer

ri x5 - 25a. m Let x = 2 - & then
x - 2

(2 - ox)5 - 25 25 - 5.24 &c + 10.23 (542 + 25

- -Sx

= 80 - 808x + . + 044, as & 0, the function 80

Greek Answers

Representative example:

l3.
um (x5 - 25) - 2) (x4 + 2x3 + 4x 2 + 8x + 16)]

x-2 (x - 2) x-.2 - 2)

Iirn (x4+ 2x3 + 4x2 + 8x+ 16) = 80.
s-2

Substituting x by 2 is permitted here because

the function is polynomial, so continuous.

Exceptional example:

y. The lint X 5 25 is the derivative of the function
x-2 x - 2

ft EST COPY AVAILABLE
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y= x5 at xo= 2.

We know that y' = 5x4. So the limit is 5$ = 5.24 = 80.

The English responses to the second question showed certain concept images more readily identified in

another question where pupils were asked to express in words what is meant by saying: "f(x)>l as x>a"".

Their predominant answer was of the type: "...it means as x gets closer and closer to a, f(x) approaches the

value 1". (Note that the English sixth form syllabi deal with limits of functions in an intuitive manner and

only at a later stage a more formal definition may be given). As with the limit in discrete cases, the above

answers show that pupils think about the limit of a function in a dynamic way. Expressions like as x gets

closer and closer to a, f(x) approaches the value r do convey a feeling of motion and flow. The question "how

close do you mean?" disturbs pupils who give either tautologous answers of the kind "as close as you can", or

again infinitesimal arguments such as "x differs from a by an incredibly small amount". The point x dots not

seem to be the point which immediately precedes a, but they rather think of x as lying in an infinitesimal

neighbourhood which is closer to a than the immediately preceding point. Let us be more explicit. At this stage

the pupils are not sophisticated enough to reject the existence of a "previous" number on the grounds of the

nature of the continuum, (as it is formed after the Weierstrassian revolution in the theory of Real numbers).

This "previous" number is distinct from a and thus can be represented on the real line as a specific distinct point

6, where the interval between a and b is infinitesimal yet nonetheless it exists. These responses suggest that

pupils do naturally think of the real line as composed of points and their infinitesimal neighbourhoods in a

naive way. So, one can say, that their concept of the continuum is closer to the Cauchy Leibniz one than that

of Weierstrass.

The Greeks, who have been exposed to the formal treatment, basically gave answers similar to the 0

above. As well as factorization and cancellation done within the lim sign, L'Hopitafs rule was also used in a

few responses. For this population, questions like this are familiar in that they often appear in the entrance

examinations. Our particular example 0 shows expertise and confidence in using standard knowledge. We asked a

Few subjects, after the test, who had used factorization and cancellation to justify their use of cancellation under
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the lira sign; the following kind of explanation is typical: " We may divide x-2 into x5-25 whenever x is not

2; it's true then, however close x is to 2, and so we can do the same in the limit". As in question 1, nobody

offered an e-8 argument. We pick out the response y because it was impressive that a pupil with so, little

experience can have already insight in fundamental notions of Analysis. There was just one answer of this type.

Finally answers of the type: Um x5- 25 _ Q.- 1

-r-.2 X - 2 2 - 2 0

which were found in both groups, brought to the surface pupils' difficulties with handling zero. These

difficulties really have nothing to do with the limit concept; zero is a bane for nearly every pupil some time in

his (or her) mathematical career!

CONCLUSION

The question of when Analysis, as opposed to Calculus, should be first taught is one of great

contention. In Greece, pupils meet Analysis in their last year of school, whereas in England students first meet

it in their first year at university (and there is now a move 'there to delay it even further, to their second year).

The English view seems to be that the bulk of Calculus may be taught without reference to the first arguments,

and first arguments when needed may be adequately explained by infinitesimal reasoning. The Greek approach

seems more philosophic, that the firit principles should be "properly" (i.e formally) explained as soon as

Calculus is introduced. Our study suggests that the English are deprived of insight about the mainstream modern

model (Weierstrass) of the real continuum, and think more in terms of the antiquated (though briefly revived in

Non-Standard Analysis) Leibniz-Cauchy model, where the numbers on the real line have infinitesimal

neighbourhoods. The Greeks, although they did not use for example the "e- 8" definition and preferred to use

standard procedures, did seem to be able to accept a limit as a mathematical object rather than a "dynamic"

process. This presumably is influenced by their more formal background. However a few Greeks did show some

conflicts between the dynamic and static approaches, suggesting that the first is more natural to their original

intuition. We feel a gentler introduction may be devised which converts their intuition rather than trying to

destroy it by abruptly giving the formal presentation; where in fact the old and new ideas clash.
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INFINITY IN MATHEMATICS RS R SCIENTIFIC SUBJECT FOR
COGNITIVE PSYCHOLOGY

Rafael Nunez Errazuriz
University of Fribourg
University of Geneva

Switzerland

Summary:
Cognitive Psychology has not studied enough the infinity, which has been an important concept

for human knowledge. A brief bibliographical revision is presented. In general, litterature is

orientated towards didactics of the concept of infinity and its educational implications, but not to

a real comprehension of the understanding of this concept. It is suggested to consider the

cognitive activity that infinity requires as an independent scientific object in order to develop a

solid theoretical corpus that permits the creation of new concepts for a better discrimination of

the phenomena that until now aren't well identificated. Besides, the study of the conception of

infinity allows to investigate areas of cognitive activity not based on direct experience (because

of our finite reality), offering us very little explored aspects of the pure mental activity.

Resumen:

La psicologfa cognitiva no ha estudiado lo suficiente un concepto tan medular en la historia del

saber humano, como es el infinito. Se presenta una breve revision bibliogrdfica. En general la

escasa literatura al respecto estd orientada a la diddctica del concepto de infinito en matemdticas

y a sus consecuencias pedagdgicas, y no a la comprension misma del entendimiento del

concepto. Se propone considerar a la actividad cognitiva que requieie el infinito en matemdticas

como un objeto de estudio cient(fico independiente con el fin de crear un marco teorico solid°

para acuiiar nuevos conceptos que permitan discriminar fenOmenos que hasta hoy no son

claramente identificados. Ademas el estudio de la conception del infinito permite investigar

dominios de la actividad mental no basados en experiencias directas (debido a nuestrarealidad

finita), haciendonos acceder a terrenos muy poco explorados de la actividad puramente mental.

El problems

En relaci6n con ciertos conceptos como espacio, tiempo, "belleza, o
bondad, ya el hombre de las civilizaciones mss tempranas reconoci6
algunas cualidades especiales posibles como "inagotable",
"interminable", "indefinido" e "infinito". En pueblos cuyas culturas y
origenes geograficos diferian, conceptos de ese tipo se enraizaron
fuertemente en otros tan abstractos como misticos, manifestandose
bajo otras formas como "eternidad", "perfeccion", o "dios".
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Este articulo se centra en el mas abstracto de ellos: en el concepto de
infinito. A traves de la historia de la humanidad, complejos dominios de
la actividad mental humana como la filosofia, la religion, las ciencias y
las matematicas han dedicado grandes esfuerzos al estudio del infinito.
Como dijera el eminente matematico aleman David Hilbert, "The
infinite! No other question has ever moved so profoundly the spirit of
man; no other idea has so fruitfully stimulated his intellect; yet no
other concept stands in greater need of clarification than that of the
infinite..." (citado en The Open University, 1988). Este concepto siempre
ha constituido un tema crucial para las distintas ramas del
conocimiento humano, presentando mucha controversia y provocando los
mas variados sentimientos: impotencia, respeto e incluso miedo, entre
otros.
La situacion no es distinta en matematicas. A traves de su historia,
desde las paradojas de Zenon hasta las discusiones actuales sobre los
numeros transfinitos de Cantor, el infinito ha sido un concepto dificil
de tratar. Aunque en muchas oportunidades ha sido abiertamente negado,
o dejado a la voluntad de naturalezas divinas, este concepto ha estado
presente en las mentes de los maternaticos, teniendo una evoluciOn muy
dinamica y enfrentando teoricos con posiciones radicalmente
d if e re n te s.

Si aceptamos que el infinito es un concepto importante para el
conocimiento humano, y dado el desarrollo de la psicologia en los
Oltimos 40 afios, se esperaria una rica y abundante literatura
relacionada con la comprension del entendimiento de tan trascendente
concepto. Paradojalmente la situacion es otra. Como Fischbein afirmO
(Fischbein, Tirosh and Hess, 1979, p. 3)

It is surprising that psychology has done so little in exploring
the fascinating concept of infinity, whose importance for
science, mathematics and philosophy is undeniable. Even Piaget,
who is an ...infinite source of new ideas and new outlooks
concerning a variety of fundamental scientific concepts, has
made a very limited contribution in this direction.

En el presente articulo se limitara el concepto de infinito al area de las
matematicas, cuya consistencia, rigor formal y naturaleza abstracta
pueden facilitar la aproximacon cientifica al fenomeno.
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Si tomamos algunos de los cuestionamientos que se planteo Galileo,
Lhay mas numeros naturales que pares?, u otros de Georg Cantor, shay
mas numeros racionales que enteros positivos? o ,hay tantos puntos en
Ia superficie de un cuadrado como en uno de sus lados?, ciertamente
como psicOlogos cognitivos estamos en presencia de una tematica
interesante. Desde el punto de vista de la psicologia cognitive pueden
identificarse dos grandes orientaciones en cuanto a la relaciOn que
existe entre el aparato cognitivo del individuo y Ia estructura teOrica
de las matematicas. Para la primera, la estructura tedirica maternatica
(los numeros, los cuadrados y los puntos, red& mencionados en las
preguntas de Galileo y Cantor) es una entidad independiente del aparato
cognitivo, preexistente a este. La manera en que el aparato cognitivo
aprehende esta estructura te6rica es el objeto de estudio de este
enfoque. La matematica es, tiene sus leyes, y lo que interesa es
estudiar coma el individuo las descubre y las aprende. Para Ia segunda
orientacion, por el contrario, todo concepto matematico es una creed&
del sistema cognitivo en su interrelacien con el media (naturaleza,
sociedad, etc.). De esta manera, el objeto de estudio lo constituyen las
caracteristicas, necesidades y propiedades del aparato cognitivo que
hacen posible la creacien y Ia existencia de determinados conceptos
maternaticos (p.e. los numeros, los cuadrados y los puntos).
Es este segundo enfoque el que motive al autor. Desde un punto de vista
psicolOgico deberiamos preguntarnos entonces Lcual es Ia necesidad
real de construir un concepto coma el infinito?, 6rno es que somas
capaces de pensar en el infinito?, Lporque podemos concebir una nocion'
coma esa, crear un concepto c6mo ese?, Lcuales son las condiciones que
necesitamos para ser capaces de concebir el infinito?, Lque tipo de
actividad cognitive funciona cuando estamos pensando on el infinito?

Lasuauslalaecha

Al analizar la literatura relacionada con el infinito en matematicas, aim
cuando las corrientes teericas sean variadas (teoria de la informacion,
cognitivismo, psicologia genetica, etc.), se puede constatar que en
general ells se orienta fuertemente hacia Ia educaciOn y sus
aplicaciones pedagegigas, por sabre un interes epistemolOgico o de
ciencia basica pura.

Ha habido cierta tendencia a intentar dilucidar ciertos problemas
respecto a Ia ensefianza del infinito en el dominio de los numeros y las
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dificultades de su aprendizaje (Tirosh, Fischbein & Dor, 1985; Evans &
Gelman, 1982; Duval, 1983; Falk, Gassner, Ben-Zoor & Ben-Simon,
1986). Siempre ligados a Ia realidad escolar, algunos- trabajos han
tratado sobre las nociones de infinito que estdn a la base de ciertos
conceptos en calculo infinitesimal, como series (Davis, 1982), limites
(Smith, 1959; Sierpinska, 1987) y continuidad (Tall & Vinner, 1981;
Furinghetti & Paola, 1987).
Entre algunos estudios que intentan responder a necesidades menos
aplicadas directamente a Ia educaci6n, se puede citar un trabajo de R.
Falk y otro de A. Sierpinska. En el primero se intenta estudiar Ia
concepciOn que tienen los nitios de Ia naturaleza del abismo entre
cantidades finitas inmensas y la cantidad infinita mas pequeria que se
pueda concebir (Falk & Ben-Lavy, 1989). En el segundo, se pretende
saber en que condiciones las concepciones de infinito y de maternaticas
de los estudiantes comienzan a funcionar como obstaculos
epistemolOgicos para apender otras nociones (Sierpinska & Viwegier,
1989).

Por otro lado, un grupo de trabajos, ha centrado su interes en aspectos
mas fundamentales y basicos de la psicologia cognitiva respecto al
entendimiento del infinito. Entre los primeros esfuerzos realizados se
puede citar un trabajo de A. Rey sobre las cantidades limites en el nino
(Rey, 1944), y algunos trabajos de Piaget, que teniendo un interes
claramente epistemolOgico, no profundizan lo suficiente como para
hablar de un estudio del pensamiento y Ia cogniciOn humana frente al
concepto de infinito. Asi, se puede mencionar sus estudios sobre la
nocidn de punto y del continuo aparecido en sus trabajos sobre la
genesis del flamer° y Ia representaciOn del espacio en el nifio (Piaget &
Inhelder, 1948). En su libro "Epistemologie Mathematique et
Psychologie" publicado con el logico Beth, se dedican ciertas
reflexiones a la intuicidn del infinito, aunque si bien es cierto, estas
son escritas por Beth (Beth & Piaget, 1961). En cuanto dice relaciOn al
infinito y la naturaleza operatoria del n6mero, el dedica algunas paginas
a ese tema en "Introduction a l'epistemologie genetique. Tome I: Ia

pensee mathematique" (Piaget, 1950). En general, en Ia fructifera y
creativa obra de Piaget, quien por lo demas estuvo siempre cerca de Ia
matematica y de conceptos formates, no se encuentran grandes aportes
relativos al infinito. Al parecer tampoco ha habido aportes provenientes
de autores neo-piagetanos.
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Un primer estudio, sin aplicacien educacional inmediata sobre la

intuicion del infinito en matematicas a distintas edades fue desarollado
por 'Fischbein y colaboradores (Fischbein et al, 1979). Uno de sus
objetivos fue el de estudiar los aspectos contra-intuitivos de la

naturaleza del infinito. Ellos concluyen que los esquemas lOgicos estan
naturalmente adaptados a realidades finitas; que a partir de los 11 arios
se comienza a tener una cierta intuiciOn del infinito, pero que a causa
de su naturaleza contradictoria es muy sensible a los contextos
conceptuales y figurales de las situaciones planteadas. Por otro lado
ellos concluyen que en general la intuiciOn del infinito no es afectada
por el entrenamiento en matematicas, la que -influye solamente en la
comprension formal y superficial del concepto.
Despues de esa interesante publicacion, que ya tiene mas de 10 arios,
Fischbein no ha seguido incursionando en el dominio del infinito
(Fischbein, 1989); si lo han hecho algunos de sus colaboradores, aunque
con una orientaciOn hacia Ia educacion (Tirosh, Fischbein & Dor, 1985).
Otros dos trabajos interesantes son los de Langford sobre el -desarrollo
de los conceptos de infinito y limites en matematicas (Langford, 1974)
y de Taback (Taback, 1975), quien estudio los conceptos asociados a
correspondencia, punto limite, y vecindad asociadas a la' nocion de
limite. lnteresantes resultan las observaciones de Langford de ninos de
diferentes edades sobre las capacidades de concebir iteraciones
indefinidas producidas mediante las 4 operaciones aritmeticas
fundamentales. Concluye que en condiciones favorables, hacia los 9 arias
el nirio es capaz de concebir la iteraciOn indefinida mediante la adicion,
la resta y la multiplicacion, pero que mediante la divisiOn no lo logra
sino hasta los 13 arias.
Por ultimo, un aporte interesante es el de Tall (Tall, 1980) que propone
interpretar las intuiciones del infinito no en el sentido tradicional y

contraintuitivo esquema de la cardinalidad, sino en el de los numeros de
medidas infinitas. El piensa que el hecho de que la medida se muestre
mas cercana de la intuiciOn se deberia a que es una extension natural de
nuestros esquemas relativos a la nociOn inicial de punto. Aspecto que le
parece fundamental al momento de estudiar las intuiciones en los nirios
debido a que ellos no tienen acceso a esquemas de maternatica formal
superior.
De estos primeros estudios se puede esbozar. algunas ideas. La
conceptualizaciOn del infinito es sensible a los contextos en los que se
desarrolla Ia actividad cognitive, por lo que es necesario indagar mas
profundamente en ellos. A Ia base de un primer entendimiento del
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infinito podria estar Ia operacion mental de iteration indefinida de
operaciones basicas realizadas con elementos simples de estimaciones
cardinales o de medidas (quizas antes incluso que la consolidation de la
notion de nUmero entero positivo y de operaciOn aritmetica). El lo hace
resaltar Ia importancia de ciertos elementos teOricos como el rol de la
convergencia y la divergencia en el desarrollo del concepto de infinito,
asociado a lo que vulgarmente se llama infinitos grandes y chicos.

Discusion

Es indudable que la literatura que existe en psicologia cognitiva
respecto al infinito en matemdticas es pobre comparado a la

importancia que este parece tener. Si bien es cierto existen ciertos
esfuerzos por entregar elementos clarificadores de ese fascinante e
intrigante mundo, ellos son esfuerzos aislados, discontinuos en el
tiempo y carentes de lazos teoricos entre si.
A nuestro parecer, ademds de la aperente importancia ya discutida del
concepto de infinito, el estudio de la conception del infinito permite
investigar dominios de la actividad mental no basados en experiencias
directas (debido a nuestra realidad finita), haciendonos acceder a
terrenos muy poco explorados de Ia actividad puramente mental. Vale
decir, incursionando en el entendimiento del infinito se tiene acceso a
un universo de actividad mental singular y cualitativamente diferente,
en Ia medida que estamos en condiciones de explorar procesos
cognitivos sin (o con escasos) remanentes experienciales empiricos.
Considerando las contribuciones hechas por los trabajos pertinentes,
nos parece que para poder sobrepasar Ia frontera del conocimiento que
se tiene hoy al respecto, se necesitan nuevas nociones que permitan
discriminar mejor las distintas cualidades y sutilezas conceptuales.
Hoy en dia englobamos bajo el nombre de infinito, un gran numero de
conceptos afines que hipot6ticamente deberian poner en funcionamiento
procesos cognitivos muy diversos al ser evocados. Asi, por ejemplo,
podemos hablar de infinitos potenciales y actuales; grandes y pequenos;
referidos a contextos tan diferentes como series, geometria euclideana,
cardinalidad, limites; bajo concepciones que pueden ser dindmicas o
estaticas, etc., y siempre hacer referencia al infinito (de hecho el
presente articulo peca de Ia misma falta de precision conceptual). Nos
parece que ha Ilegado el momento de enriquecer nuestro vocabulario
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para poder continuar haciendo ciencia. Para ello es preciso identificar
bien y definir el objeto de estudio.
Dado el gran numero de conceptos aislados que se estan presentando,
parece oportuno comenzar a considerar seriamente en psicologia
cognitiva al infinito como un objeto cientifico independiente que
permita desarrollar y acuriar nuevos conceptos al interior de un marco
de referencia sOlido y bien estructurado.
Finalmente, definiendo bien al infinito como objeto de estudio
cientifico para la psicologia cognitiva, parece interesante. vislumbrar
no solamente las aplicaciones que podria tener en el campo de Ia
educacion de los diferentes aspectos del infinito maternatico y de Ia
elaboracion de curricula, sino ademas las relaciones tearicas que se
pueden establecer con el estudio de la actividad cognitiva humana en el
mundo de Ia informatica (tan enraizado hoy en nuestra sociedad), mundo
en el que el infinito no parece tener significacion (NI Thez Errazuriz,
1989).
La frase anteriormente citada del matematico D. Hilbert aparece como
un Ilamado urgente, sobretodo su final: "... no other concept stands in
greater need of clarification than that of the infinite...".
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ORGANISATIONS DEDUCIIVES ET DEMONSTRATION

Luis Radford

Universidad de San Carlos de Guatemala

The following is a presentation of the results of an experimental
study which was carried out with university students about the
arrangement of the propositions of a demonstration.
The data obtained show a great diversity of arrangements. The
roots of several difficulties which impede to arrive to a correct
arrangement of a demonstration are detected.
The results show new elements to be considered in a
demonstration teaching program.

Les recherches actuelles, menees dans le cadre de la Didactique des Mathematiques,
font etat dun inter& croissant pour la comprehension des problemes lies a
l'apprentissage de la demonstration.

Les travaux de Balacheff [B11, [B2j, inspires de celui de Lakatos, montrent, a travers

une situation d'interaction et communication, le role que jouent chez les eleves
('incertitude et l'evidence, dans une demonstration. Dans [ R3 ], nous exhibons
certaines regles, de type "social", qui commandent la redaction des textes de
demonstration. Ces regles obeissent, en particulier, au besoin du locuteur de faire
admettre un resultat en se faisant comprendre par l'auditeur, et prennent en compte des

elements logiques et linguistiques. Duval et Egret [D1], dans une perspective
cognitive, montrent une difference importante entre la structure de demonstration et
celle du discours usuel en langue naturelle, mettant en evidence le role joue par ce qu'ils
appellent l'Arc Transitif de Substitution, et proposent certains principes pour
l'enseignement de la demonstration, dont celui de distinguer les taches heuristiques et
les Caches specifiques de demonstration, principe qui avait ete suggere auparavant par
Gaud et Guichard [GI].

En suivant cette distinction didactique entre taches heuristiques et Caches de

demonstration, et en nous arretant sur cette derriere, on peut distinguer un certain
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corpus d'elements cognitifs de nature difference qui sont mis en oeuvre lors dune fiche

de demonstration: dune part on a le plan des enonces ou propositions; d'autre part on a

le plan des regles (qui peuvent ere de nature differente, v.gr. regles de substitution

syntactique d'expressions, regles de transitivite, regles de causalite, regles de type

logique); enfin, un troisieme plan qui correspond aux productions, une production etant

l'acte qui permet dassocier un nouvel &once (1'enonce resultat ou final de la

production) 4 d'autre(s) enonce(s) a ravers une regle. Souvent, les productions sont

vues comme relevant du raisonnement deductif;. on park alors de deduction. Cette

interpretation -qui prend ses sources dans ce qu'on apelle el metapostulado logicista de

la psicologia cognoscitiva [R4] - suppose, ne serait-ce qu'implicitement, que les

processus de pens& sont isomorphes aux calculi formels de la logique symbolique.

Des resultats que nous avons trouve precedemment [RI], [R2], permettent de voir que

les productions n'ont pas forcement une signification logique.

Or, it existe une composante qui agit sur les plans precedents (propositions, regles,

productions) et qui joue un role d'organisateur des productions. Cette composante

cognitive -sur laquelle nous voulons nous arreter dans ce travail- gere la suite des

productions de facon a ce que l'organisation des enonces qui en resulte devienne

effectivement une demonstration.

Les actions didactiques qu'on retrouve dans la presque totalite des manuels exhibent en

fait l' etat final de l'organisadon. On salt des bien que cette pratique de l'enseignement

de la demonstration n'a pas eu le succes attendu. La question qui surgit maintenant est

done celle de connate de plus pits le fonctionnement de cette. composante

d'organisation dans une cache strictement de denuinstration.

L'EXPERIMFNTATION

Pour aborder ce probleme, nous avons mene une experience avec 70 eleves de

premiere armee de l'Ecole d'Ingenieurs de l'Universidad de San Carlos de Guatemala.
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La passation a eu lieu en mai 1989, it la fin du premier semestre. 11 faut dire que la

plupart de ces eleves ont ete soumis it une education mathematique ou la rencontre avec

la demonstration s'est faite it wavers les manuels, ou en classe en suivant le modale

d'"apprentissage par imitation".

Nous avons presente aux eleves une epreuve ecrite oa se trouvaient les enonces de

deux theoremes. Ensuite, en bas de chaque enonce, it y avait, dans le desordre, les

propositions qui constituaient une demonstration du theoreme correspondani On

demandait aux elaves de reconstituer la demonstration.

Void les deux enonces:

a) Dans tout triangle rectangle, la longueur de l'hypotenuse est plus grande que celle

de chacun des cotes.

b) Soit n un entier strictement positif. Soit xis = 1 + 1/n. Alors pour tout n > 2, 2 -

xn > 2/5

Voici maintenant la liste des propositions, dans l'ordre presence. Nous avons ajoute ici

une colonne qui comporte des expressions de reperage (Fn ou Gm), qui nous sera utile

pour l'analyse des resultats. Cette colonne ne figurait donc pas lors de

l'experimentation

Premiere demonstration:

F3 mais b2 c2 > b2

F4 done a2 > b2
F7 donc a2 > c2
F2 D'apres le Theoreme de Pithagore

on a: a2 b2 c2

F5 C'est-a-dire a > b

F6 De la !name fagon b2 c2 > c2

Fl Soient a la longuetz de l'hypotenuse
et b et c les longueurs des oaths

F8 Cest-a-dire a > c
Deuxiame demonstration:
G3 3/5 > 1/n
G6 2-(1+1/n) > 2/5
G2 n > 5/3
G1 Soit n tel que n > 2
G5 1 -1/n > 2/5
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G7 2- xn > 2/5

G4 1 - 2/5 > 1/n

RESULTATS

IA PREMIERE DEMONSTRATION

L'etude des organisations effectuees par les eleves en vue de produire une

demonstration montre que, pour le premier theoreme, dix eleves arrivent 3 trouver une

organisation deductive de demonstration.

ORGANISATIONS PARTIELLES :

Parmi les organisations proposees par les eleves it y en a une assez frequente (39/60): it

s'agit de productions comportant de petites chains qui n'arrivent pas A etre integrees

dans une organisation majeure. II y a des cas or] un eleve produit une seule

organisation, et d'autres oir l'eleve en produit deux organisations "non connexes":

Erick: Fl, F2, F4, F5, F7, F8, F3, F6. On reconnait dans [F4, F5] et [F7, F8] les

organisations non connexes.

PRODUCTIONS SIMPLES ET NON SIMPLES :

Parmi les 60 eleves qui n'arrivent pas A trouver une organisation deductive de

demonstration, 17 commencent en mettant les deux premiers enonces (hypothese et

theoreme de Pythagore) sans pouvoir continuer avec l'organisation deductive. De

plus, on voit qu'un individu qui arrive A placer les trois premieres propositions avec

succes i. e. Fl, F2, F3, mene A bon terme la niche d'organisation. Reconnoitre Ia

place de la troisieme proposition (F3), demande Ia prise de conscience que cette

proposition, qui releve de l'algebre elementaire, fonctionne comme hypothese au meme

temps que le theoreme de Pythagore, pour arriver A Ia conclusion partielle F4. Cette

proposition nest donc pas entrain& par les precedences, mais elk doit etre inseree dans

('organisation pour obtenir une autre proposition. Une telle production, que nous

appelerons production "non simple" (enonce - enonce auxiliaire - regle -enonce),

s'avere cognitivement plus difficile que les productions "simples" (enonce- regle-

enonce). En effet, ces 17 eleves qui mettent en tete de leur organisation Fl, F2, sans

pouvoir continuer avec Fl, F2, F3 ... presentent des organisations partielles "simples".
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ORGANISATIONS SUPRA DEDUCTIVES:

Un autre type d'organisation rencontre est celui qui consiste a organiser les propositions

en groupes, de tel sorte qu'un groupe "implique" celui qui le suit dans l'organisation.

Ainsi, par exemple, nous trouvons la suite chez Edwin: F1, F2, F5, F8, F4, F7, F3,

F6. Ici, [F5, F8] "implique" [F4, F7].

ENONCES QUI SONT DE PLUS:

L'impossibilite d'integrer des &tomes dans une chalne, amine 22 eleves a placer lesdits

&tomes a la fin du texte. C'est tits souvent le cas des enonces F3 et F6 (cf. Erick et

Edwin plus haut). Mais on rencontre aussi le cas de l'hypothese. Voici cet exemple:

Carlos: F2, F4, F5, F7, F8, F6, F3, Fl.

ORGANISATIONS SANS CARACTERE DEDUCTIF :

II ya des cas aussi oir reeve produit une sequence sans caractere deduct& Anabella:

F2, Fl, F8, F5, F3, F4, F7

LA DEUXIEME DEMONSTRATION:

II n'y a qu'une seule demonstration correcte. Seulement 6 eleves finissent leur

organisation avec la conclusion cherchee. Il y a 27 &eves qui partent de la conclusion.

ORGANISATIONS DEDUCTIVES INVERSES:

16 eleves produisent comme texte de demonstration une organisation deductive

complete mail "inverse". C'est-A-dire qu'une foil l'hypothese posee, les eleves partent

de Ia conclusion et parviennent a obtenir une organisation deductive, epuisant Ia suite

des propositions donnees. Voici un exemple: Angel: GI, G7, G6, G5, G4, G3, G2.

Nous voyons donc que ce type d'organisation -que Pappus et Proclus situaient au rang

de ('analyse, en contraposition de la synthese [H1] , [P1]- est assez frequent chez nos

eleves, et possede un rang de demonstration.

Du point de vue deductif, l'organisation tient aussi bien dans un sens comme dans

('autre; seulement chaque sens ne prouve pas Ia merne chose, et ce qui est relevant ici
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c'est que Ia bonne organisation du point de vue mathematique ne correspond pas avec

l'idee de Ia bonne organisation chez l'etudiant. L'organisation chez l'etudiant se voit

guidee..dans ce cas-ci, par l'idee gull se fait des operations arithmetico-algebriques. En

effet, 1- 1/n est vu comme le resultat d'effectuer 2 -(1 + 1/n), et non pas a ('inverse.

Donc, on passe plutot de G6 a G5, que de G5 a G6, bien que dans les deux cas la regle

qui permet Ia production soit de meme nature (regle de substitution d'expressions). Le

rapport entre le nombre d'organisations correctes avec celui d'organisations inverses

(1/16), permet de nous donner une idee de la .difficulte a marcher dans le bon sens,

ainsi que du degre de Ia complexite qu'il y a derriere l'ecran de demonstration.

Enfin, it convient de remarquer que dans cette deuxieme demonstration, toutes les

productions etaient 'simples"; de plus, presque la totalite des eleves produisent des

organisations deductives partielles.

CONCLUSION

L'orsqu'on distingue, dans une approche didactique, les taches specifiques relevant de

l'heuristique et celles de la demonstration, on est amend a s'interesser a la composante

organisatrice des productions. Les problemes auxquels nous avons confronte les

eleves permettent deja d'apprecier une grande diversite d'organisations visant un texte

de demonstration: organisations sans caractere deductif, organisations partielles

deductives, organisations deductives inverses et organisations deductives de

demonstration. Nous avons pu voir que la mise en oeuvre dune production devient

plus difficile quand i1 s'agit dune production "non simple" -i. e. quand it faut tenir

compte des propositions auxiliaires- que dans le cas des productions "simples". En

outre, l'intapretation que fait l'eleve des &tomes devient vital dans ('organisation de

ceux-ci: cest justement ('interpretation de G5 comme resultat d'effectuer les operations

qu'apparaissent en G6 qui amene les etudiants a placer G5 comme consequence de G6,

alors que cest ('inverse qu'on attend dans une Cache de demonstration. C'est pourquoi

nous affirmons que dans ('organisation le contenu ne peut pas etre evacue, comme

semblent le suggerer Duval et Egret [D1). Le statut dun enonce est aussi fonction de
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son contenu, faute de quoi le traitement des enonces deviendrait formel, ce qui nest pas

le cas.

Devant la diversite importance d'organisations rencontrees et des difficultes observees

chez les eleves dans les itches demandees, la question qui se pose est celle de

determiner les moyens qui pourraient eventuellement amener les etudiants it produire

des organisations deductives de demonstration. Mais cela demande de mieux connaitre

la composante d'organisation, ainsi que sa relation avec les plans cognitifs signales

auparavant (propositions, regles, productions). On peut se demander dans quelle

mesure les caracteristiques des productions (productions d'association d'enonces sans

caractere logique [R1], productions de type logique, etc) vont influencer la structure

logique de cette composante d'organisation. On peut formuler la mdme question au

sujet du rapport entre la nature des regles (regles de type pre-logique, regles de type

logique, etc) et la composante d'organisation.

Les demarches sousjacentes A une tiche de demonstration restent encore mal connues.

Et c'est, it nous semble, un probleme auquel it faut faire attention, dans un cadre

didactique de la demonstration.
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THE TEACHING EXPERIMENT 'HEURISTIC MATHEMATICS EDUCATION'

Anno van Streun

Department of Mathematics

P.O. Box 800 9700 AV

Groningen The Netherlands

Abstract

Learning to analyse problems and learning to use heuristics is the main

focus of the research project 'Heuristic Mathematics Teaching', which is

being carried out the last eightyears in 4th year secondary education. In

the summary of the thesis 'Heuristisch wiskunde-onderwijs' (Van Streun

1989), dealing with that project, we read the next conclusions.

The educational experiment showed that educational arrangements do

influence better problem solving development. On a number of points one

educational variant is more conducive to that development than another.

Important aspects of a successful educationalarrangement are a balanced

variation of 'plain' and 'applied' problems, explicit attention for heuristic

methods and priority of an heuristic exploration of the specific domain to

the exact formulation of mathematicalconcepts and techniques.

The theoretical framework

The knowledge required to solve problems has several different aspects

(Van Streun, 1982a, 1982b, 1990). Knowledge which is specific to the

subject can be subdivided into having a command of the concepts to be

used and having a cognitive schema at one's disposal which makes it

possible to relate the problem to a network of concepts, relations and

experience in the memory. Understanding the problem can be regarded as
forming an internal mental representation (which from now on will be
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referred to as the mental image ) of the problem situation which includes

all of the solver's ideas about the problem situation. Understanding a

problem correctly can be described as having formed an adequate mental

image of the problem situation, by means of which all the relevant

components of the problem can be related to the knowledge the solver

already has.

In addition to the knowledge required to understand the problem we also

have algorithmic knowledge (the ability to carry out precisely defined

methods for solving problems) and strategical knowledge (the ability to

approach the problem by means of problem analysis and heuristic

methods).

Analysing the verbal reports of solution processes of first-year students

of mathematics (Van Streun, 1990) we managed to formulate several

aspects of the relation between knowledge and heuristic methods, using

the next figure.

Figure 1. Aspects of the solution process.
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Understanding

AS11116._Exer
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After an initial inspection of the formulation the solver tries to compre-

hend the problem situation and to link it to the knowledge he already has

at his disposal in his long-term memory. This link sometimes leads to

recognition and reproduction of the solution without conscious making

use of strategical knowledge. The solver 'sees' the solution immediately.

If the solver does not succeed in 'locating' the problem as a type of

exercise then he can proceed to a problem analysis which can be either

very general and implicit or explicit and detailed. That depends on the

solvers individual approach to the problem and his perception of the

situation. A good problem solver can switch backwards and forwards from

a general approach to a more detailed one.

The experimental design

This is the report of an investigation of designing and teaching Mathema-

tics Education, in which students learn how to make the most of their

basic knowledge of mathematics in problem solving. The research project

was started in 1980. During the first few years research literature about

mathematical problem solving was being studied and 'think-aloud' proto-

cols were being analysed (Van Streun 1982ab, 1990). This has resulted in

formulating didactic starting points for designing Mathematics Education

referred to, in which heuristic methods take an important place. In the

course of the developing process in eight fourth grades vwo (in '82-'84) a

complete course of instruction for mathematics was written, fitting into

the new (HEWET)curriculum for applied mathematics.

On the basis of the didactic differences in presenting the same subject-

matter among the heuristic course and two common courses hypotheses

were formulated about the prospective differences in mathematical and

applied problem solving. These hypotheses were tested in a competetive

educational experiment in 21 forms in '84-'85. At this competetive expe-
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riment an investigation was made in order to ascertain if the differently

built-up textbooks for students cause different performances.

The three educational arrangements

The similarities and dissimilarities among the three educational variants

HWO (the developed heuristic mathematics education), HEWET (developed

in an official educational experiment) and WEDT (a traditional textbook)

and the expectations based upon them about the differences in output, can

be summarized schematically as follows:

Educational variants
HEWET HWO WEDT

subjects equal equal equal

number of lessons 100 100 100

nature and number
of problems equal equal equal

arranging applied and 'plain' continual first 'plain'

mathematical problems variation in phases then applied

attention for
heuristic methods implicit explicit no

expliciting mathematical late/little gradual/limited

concepts and techniques rapid/frequent

The test results and the hypotheses

The test results can be put in one scheme together with the formulated

176
96



hypotheses. Only the results printed in bold type have reference to

statistical significant differences; the other inequalities point to

non-significant differences.

The main project-hypothesis about increasing ability into problem solving

by means of mathematical knowledge can be adapted.

Ability of solving

mathematical

and applied problems

Result Hypothesis

HWO > HEWET > WEDT HWO > HEWET >WEDT

Special attention paid to problem solving does not derogate from the

mastery of mathematical basic kowledge.

Mastery of basic knowledge

of concepts and techniques

Result Hypothesis

HWO > HEWET WEDT > HWO > HEWET

HWO> WEDT > HEWET

We conclude that emphasizing mathematical basic concepts and techni-

ques versus stressing heuristic methods does not necesseraly result in a

corresponding difference in the frequency of the use of these problem

solving procedures.
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Result Hypothesis

Use of heuristic methods

in solving mathematical HEWET > HWO HWO> HEWET > WEDT

and applied problems HEWET > WEDT > HWO

Use of basic knowledge of concepts and

techniques in standard problems

WEDT > HWO p HEWET WEDT > HWO> HEWET

We observed that the nature of the problem to a high degree determines

the solver's employing algorithmic or heuristic methods. Designing sets of

problems which can be solved with the same basic knowledge but are at

unequal distance from analogous standard problems rendered good servi-

ces to the investigation of employing solving methods. This variable dis-

tance can be arranged objectively, for instance according to the number of

necessary problem transformations and be fixed objectively per solver.

In the course of one scholastic year it appeared that some shifting in

employing heuristic and algorithmic methods had already taken place.

Students having acquired an increasing command of the subject area are

going to apply algorithmic methods in a larger number of problems than

less succesful students. Being more succesful in problem solving is

attended by more frequently employing algorithmic methods.

Conclusions ,

The educational experiment showed that educational arrangement does in-

fluence better problem solving development. On a number of points one

educational variant is more conducive to that development than another. It

appears that a cognitive schema built up with 'plain' mathematical pro-

blems and applied problems in the end is inferior in applied problem sol-
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ving to schemes built up with continual or phased variation in types of

problems. Explicit attention for heuristic methods and gradual and limited

formulating of mathematical concepts and techniques in mathematical

education achieve a higher problem solving ability than implicit attention

for heuristic methods and late and little formulating of mathematical

concepts and techniques.

Our conclusions with regard to the problem solving processes are as fol-

lows. The nature of the problems presented and the distance to analogous

standard problems determine to a high degree the choice of the solution

method. During the process of the solver's mastering the subject-area his

choice - the problems remaining equal - is shifting towards algorithmic

methods. Heuristic methods have to be integrated in the cognitive scheme

of mathematical concepts, techniques and applications.
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THE UNDERSTANDING OF LIMIT: THREE PERSPECTIVES

Steven R. Williams

Washington State University

Summary: In a case study involving college calculus
students, eleven subjects attempted to deal with anomalous
problems designed to alter their view of limits. Although
most students eventually agreed that a limit could be
reached and even surpassed, the dynamic view of limit was
remarkably resilient. Three perspectives on the results
are provided, dealing with knowledge of limit as a
cognitive model, as an amorphous collection of
phenomenological primitives, and as embedded in the
concernful activity of the subjects.

Introduction, Theory, and Design

The notion of limit among calculus students has received

increased attention in recent years, owing to its particular

importance as a foundational concept in analysis and the

rather persistently reported misconceptions which students

have. These misconceptions have been repeatedly documented

(Ervynck, 1981,; Tall, 1980; Tall & Vinner, 1981; Davis &

Vinner, 1986) in various populations and teaching situations.

The current study focused on three major confusions regarding

limits: 1) confusion over whether a limit is actually

reached, 2) confusion over whether a limit can be surpassed,

and 3) confusion regarding the static character of a limit.

These three areas correspond roughly to the three major

epistemological obstacles which were overcome in the

development of the modern day calculus (Grabiner, 1981; see

Kaput, 1979 for a different view).

Various methods of viewing students' knowledge about limit

have appeared in the literature, including Tall and Vinner's

(1981) concept image to Cornu's (1983) spontaneous models.
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This study took seriously the notion that students had fairly

well structured models of limit, something like paradigm

cases, upon which their performance was based, and that these

models had to be altered in order to replace improper with

proper conceptions. The study attempted, therefore, to

document the nature of these models and to study the process

whereby they changed.

In order to describe the process of cognitive change, the

study employed a framework developed by Posner, Strike,

Hewson, & Gertzog (1982). They liken the process of

conceptual change in individuals to that of the scientific

community and draw upon recent developments in the philosophy

of science to gain insight into the process of conceptual

change. They assert that in order for accommodation (or the

radical reorganization of central concepts) to occur, three

conditions must be met. There must be some sense of

dissatisfaction with the existing conceptual framework; there

must be alternate conceptions which are both intelligible and

initially plausible; and the alternate conceptions must be

seen as fruitful, useful, or valuable. Several factors are

identified as having an impact on whether these conditions are

met. These factors include the individual's epistemological

and metaphysical commitments, the individual's knowledge of

other fields, and the character of the anomalies which .give

rise to dissatisfaction with existing conceptions.

Nussbaum and Novick (1982) suggest a three-part

instructional sequence designed to encourage students to make

desired conceptual changes. They propose the use of an

exposing event which encourages students to use and explore
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their own conceptions in an effort to understand the event.

This is followed by a discrepant event which serves as an

anomaly and produces cognitive conflict. It is hoped that

this will lead the students to a state of dissatisfaction with

current conceptions. A period of resolution follows in which

the alternative conceptions are made plausible and

intelligible to students, and in which students are encouraged

to make the desired conceptual shift.

This basic sequence was followed with each of the eleven

students in the study. Students were chosen from a second

semester college calculus course based on their answers to a

preliminary questionnaire. All students indicated having

confusion about limits in at least one of the ways listed

above. Following a session in which students were encouraged

to describe their models of limit using repertory grid

techniques (Mancuso and Shaw, 1988), students were presented

with three sessions specifically designed to change their

views of limit. During each of the sessions, students were

asked to explain two opposing statements about limits and to

choose the one most like their own view. Anomalous problems

were then presented which were designed to favor a model of

limit closer to the standard, formal definition, and the

students were asked to work them. For example, determining

the limit as x approaches 0 of the function f(x) = x sin(1/x)

favors a model of limit in which limit is seen as. surpassable.

Finally, the students were asked to explain the anomalies from

both viewpoints, in an effort to make both the anomalies and

the alternatives intelligible.
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Results

It is not possible to provide in a few pages the dialogues

which underlie these results. However, the results can be

summarized. The attempt at having' students make their model

of limit precise was for the most part disappointing. The

number of constructs used in describing their models of limit

were in general small, and they 'failed to cluster in any

significant way. A possible reasons for this will be

discussed below.

Data from the interview sessions, however, was more

rewarding. It is clear, for example, that views of limit as

not reachable or as a boundary are relatively easier to

correct than the dynamic view of limit. Specifically, it is

easy to convince students that a function can both assume the

value of its limit point, and go beyond that value, because

simple functions exist which easily serve as counterexamples.

It is less easy to rid students of the belief that there is a

process of taking a limit, (as distinct from the procedures

for evaluating limits) in which the limiting value is never

reached. It is very difficult to convince students that a

dynamic view of limit is inappropriate (this result is not

entirely surprising; see Kaput, 1979).

Three Interpretations

One possible interpretation of the failure to produce

change in the dynamic notion of limit is that students'

epistemological and metaphysical assumptions were not

conducive to change. To be sure, students in the study were

seen to have various views on the nature of mathematical
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truth, the value attached"to non-mathematical aspects of limit

models, idiosyncratic base metaphors for limit, and faith in a

practical, generic model of limit, all of which were seen as

potential inhibitors of conceptual change. For example,

students were able to compartmentalize their knowledge so that

counterexamples were seen as minor exceptions to a general

rule which remained largely untouched. They also had extreme

faith in the ability of inspection or graphing to portray all

the necessary information to work a limit problem--the generic

model mentioned above. In general, they valued their own

models more because they saw them as simpler, and eminently

practical--the models allowed them to work all the problems

they needed to work.

A second interpretation would call into question the .basic

assumption made throughout this study that students'

understanding of limit is structured in some definite way,

akin to a theory or a model. diSessa (1988) argues that a

student's intuitive understanding of physics, for example,

"consists of a rather large number of fragments rather than

one or even any small number of integrated structures-one

might call 'theories'" (p. 52). diSessa goes on to assert

that these fragments are "phenomenological primitives," and

can be understood as "simple abstractions from common

experiences that are taken as relatively primitive in the

sense that they generally need no explanation; they simply

happen" (p. 52). The problem of conceptual change then

becomes not one of attempting to shift from one model to

another, but rather the building of a coherent model from

largely unrelated units of prior knowledge. This would
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account for the failure of the repertory grid techniques to

display any structure, and is in fact supported by the finding

that students' knowledge of limits is highly case-specific and

compartmentalized.

A final view of the data, one-which I am coming to favor,

is hermeneutical. It does not so much replace, as offer an

alternative way of viewing, the claims of the other two

perspectives. This perspective views the students as being

engaged in concernful activity, in which they relate to the

world in terms of their own goals and the pre-understanding

they bring. Hermeneutics insists that such concerns are

primary, and cannot be relegated to the background in favor of

studying "cognitive processes." Thus it is entirely correct

to say that epistemological and metaphysical beliefs played a

role--in fact, as part of the students' overall world context,

they played the major role in determining whether students

would expand their horizon to include a new view of limit.

The data makes it clear that the primary concern for the

students was passing their calculus class. Despite a careful

attempt to focus on the subject matter in the sessions, a

great deal of information was volunteered regarding the

calculus class, its teacher, and its relation to school and

life in general. Specifically, students reported that their

task was to master the skills necessary to do calculus

problems of the type they knew would be on a test. In this

sense, the background was the message: my goal for them as a

researcher was not their goal. It made no sense, except as a

sort of language game that they were willing to play for me.
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A second aspect of the hermeneutical model is the

preeminence of the practical -- the mathematical experience

gained by the student through years of doing mathematics as

part of their concernful activity. Thus, as diSessa suggests,

it was through the use of knowledge imbedded in the practice

of doing mathematics -- phenomenological primitives of a sort,

that students went about accomplishing their aims. The use of

graphs, tricks, intuition, and educated guessing which has

become part of their repertoire over the course of their years

in mathematics class, were the tools brought to bear on

problems. It is the use of mathematics as ready to hand, to

use Heidegger's term. This was the idea I attempted to

capture in the concept of a generic model something which

remained unarticulated (and perhaps unable to be articulated)

but which was buried deeply in the practical experience of the

students.

It may seem that this is an overly cynical view, or at

best, that it states what is obvious, something we must move

beyond in order to really understand the processes of learning

limits. However, from a hermeneutical perspective, there is

no learning, no understanding, separate from the context which

the student perceives and the goals he or she brings to the

task. The importance of students' engagement in the

educational endeavor cannot be overstated.
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SELF-CONTROL IN ANALYZING PROBLEM SOLVING STRATEGIES

Gerhard Becker
University of Bremen

Although many efforts have been made in the past to analyze
human problem solving strategies, our knowledge about problem
solving processes is restricted especially with respect to non-
routine problems of a certain degree of complexity. Particular-
ly, the role of cognitive strategies of different -levels" and the
influence of situational components are nearly unaccessible to
research by usual methods. The author used problems originally
designated for being given to a students' problem solving work-
ing group to analyze detailed protocols of the own solution at-
tempts. Two forms of protocols were tried out: 1. writing down
all ideas concerning the solution itself, assessments of their
productiveness and of expected success when making special
attempts, impressions and emotions accompanying the solution
process:. 2. tape-recording when -thinking aloud- and endeav-
ouring to verbalize all ideas as mentioned in 1. (Both forms turn-
ed. out to be incomplete. ) Additional thoughts and impressions
recalled by retrospective were marked separately.
Evaluations of the protocols show unexpected findings and de-
monstrate that we usually have extremely simplified conceptions
of problem solving processes, which are rather determined by
our knowledge referring to fairly simple problem types.

Purpose and intentions

As mathematics educators we prefer challenging problems far more than
routine tasks as materials to be given to students. The consequence is that
our interest has to be focussed on investigating thinking as processes far
more than as results, in order to obtain fitting ideas and a basis for describ-
ing and understanding these phenomena. The complexity of a problem cor-
responds to the refinement of methods to be used when analyzing solution
attempts and the individual progress of a problem solution.
There are some well-known case studies on thinking processes, parts or
special components of them in the field of mathematical topics. Professional
mathematicians interested in the process of mathematical thinking have pub-
lished examples for the finding process of special results representing prof-
ound theorems (Van der Waerden, 1968; Hadamard, 1954) by retrospective.
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These publications trace the way from the question raised at the beginning
to the main intermediate results, special cases, ideas for a generalization
until the final result, and try to make obvious how these could' generate. They
mention the problem solvers' impression of the -sudden and immediate appear-
ance of a solution- (Hadamard, 1954, p 8), or, quoting Henri Poincare, of the
"appearance of sudden illumination" (Hadamard, p 14 ). Gestalt psychologists,
such as K. Duncker and M. Wertheimer, have analyzed probands' solutions of
problems, and the key ideas leading to them, thus being concentrated on
thinking processes; among the tasks serving as examples, we find mathem-
atical problems, too. G. Polya's books contain valuable collections of mathem-
atical examples, by which he tries to illustrate heuristicsl strategies obtained
by a kind of subsequent analysis of problem solutions. His analysis of plausible
reasoning represents a helpful attempt to express subjective procedures in
objective rules and, thus, essentially contributes to a communicable language.
In further elaborating Polya's ideas and related approaches, many authors
have attempted to show how these can be used to initiate and support stud-
ents search for problem solutions in mathematics education. As the most
conspicuous result of these efforts, with respect to educational practice,
can be regarded the elaboration of model discerning different phases on the
whole structuring the problem solving process (f.i. Strunz, 1968, pp 22-239;
Becker, 1980, pp 109-119). Developing heuristical strategies obviously is bas-
ed on simple techniques, thumb rules, and elementary forms of heuristics, but
since we do not want students to confine themselves to the latter, we urgent-
ly need knowledge on further developed and more generalized strategies.
One main reason for this shortage in our present knowledge is the difficulty
to completely and objectively observe these processes and to describe think-
ing processes of a sufficiently high level by means of an elaborated language.
Persons interested in solving mathematical problems usually are not trained
in observing themselves when thinking, especially if both activities are carried
out simultaneously; additionally their endeavour will be concentrated on finding
solutions rather than on learning a specialized language allowing them to ex-
press their own thoughts. Very often students even do not understand what
we want to know when asking them to describe how a problem solution was
found; the answers. we obtain will be "I did it in the same way as before'',
"I did it in that way, since I was sure it was correct'', or the like. (Impres-
sing examples of students' reactions to questions with this intention are to
be found f.i. in Scholz, 1987.) Besides this, problem solving processes are
nearly inaccessible to an -objective- observer, at least in essential parts. We
cannot describe these internally progressing processes and phenomena by our
usual language; we need to utilize comparisons, analogies, images, metaphors,
and being concentrated on solving a problem calls for so much of our concen-
tration that this process would suffer from directing our attention to observ-
ing ourselves. And the efforts to formulate our thoughts in any linear sequence
of words seems to slow down the problem solving process itself and to ob-
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struct endeavours to find productive ideas for the solution itself.
Van der Waerden describes this dilemma sharply as follows: The psychology
of finding has its particular difficulties. Most of us find it difficult to sub-
sequently remember all which was passing trough our minds. It is even harder
for us to give a report of our own short preparing reflections such that other
individuals, too, are able to understand them. The short hints by which you
talk to yourselves cannot be communicated to others wit hout being put more
precisely and explained , and putting our thoughts more precisely modifies
them." (Van der Waerden, 1968, p 26; originally in German).
However, self-observation and self-control turn out to be the least dubious
method to learn about our own more complex thinking processes. The most
essential condition is an observer's interest both in the topics and in heuris-
tical strategies. Many reservations have been formulated against self-obser-
vation as scientific method, by good reasons, but up to now no alternative
method is known which could make us discover so many important details
of problem solving processes, at least in cases of sufficiently complicated
problem types.

Problem examples

The problems chosen for this purpose are taken from different collections
destinated to be presented to students as additional offers going beyond the
usual demands of school tasks. Problems for which a solution was not to be
found immediately or in fairly short time by the author, ware taken as topics
for the sketched purpose. (It cannot be excluded that at the very beginning
of looking for a solution any blockage prevented immediatly finding a result
and continued effecting the later progress of the problem solution; but in the
present context this was regarded as helpful under aspects of the purpose
of this study.) So, the problems used here can be characterized by a well-
defined goal and a vastly extended repertory of well-defined means; the dif-
ficulty is rather determined by subjective estimation and depends also on

situational conditions. Too simple problems would scarcely allow to distinguish
them from routine tasks, whereas too difficult ones can be expected to claim
so much concentration that observation of problem solving behaviour could
seriously be impaired.
Some outcames of the study will be illustrated by findings from the following
example:
-M is the midpoint of a chord AB of a circle. Any other chord CD is drawn
through M. Tangents drawn at C and D meet AS in P and Q respectively.
Prove: CP = 00, and PA = QB." (National Council 1966, p. 5, problem nr. 67)
Most of the examples are taken from geometry; problems belonging to this
topic area seem to suitable especially because of the condition concerning
the means. Geometry problems seem to represent best the conditions form-
ulated above, especially with respect to the means.
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Method and data collection

The data were collected in two ways.
1. During the own attempts to find the solution of a problem, all consciously
registered thoughts, associations, impressions were written down on the work
sheets together with the solution attempts and their persuences, as com-
pletely as possible. Against usual practice the figures were not corrected or
repeatedly accomplished but newly designed; this procedure makes recognizable
the lines of reasoning more easily. Finally, a readible form was drawn up,
and additional thoughts, which could be remembered shortly after the exper-

. iment sessions, were added (with special markings ).
2. Thinking aloud was tape-recorded when solving the problems, and it was
tried to formulate all conscious solution steps, including remarks as men-
tioned under 1., later the tape-recordings were transcribed.
In a "complete" version of the protocols all utterances have been recorded.
An abbreviated version contains only the "essential" ideas (f.i. remarks of
emotional character and assessments referring to the estimated productive-
ness omitted).

Aspects and criteria for analyzing the protocols

The abbreviated protocol versions claim to contain the "essential" ideas of
the solution process. A serious question when drawing up the elaboration of
these protocols was the "extension" or the originally supposed range of one
"essential" idea. It is obvious to condense f.i. the repeated transformation of
any obtained formula by routine techniques in only one step, even if it takes
several lines on the work sheet. But f.i. the new attempt to transform a
formula, already in cases where it is done with a little modification in substit-
uting any partial formula, a second run to do the same transformation with-
out a previously committed error, a new attempt using other combinations of
parts occurring in a figure, or the expressed purpose to control the correct-
ness, are considered as a new idea. The short touch of an impulse to try
out any proof part even if it was forgotten later or not put into effect by
any reason, is regarded as a separate step. These "smallest elements" shall
be named steps; shorter or smaller parts (such as the single lines of a trans-
formation of a formula) are not registered as independent steps. Mostly, a
step consists in using a well-defined technique (solving an equation or an
inequality, searching for a formula in order to substitute a term in any
longer formula, and so on) .
These reflections suggest a distinction between a strategy and a step, not
as much in terms of time consumed to carry out a step, but of the range
of a solution element. It is hard to adhere to this distinction throughout the
the whole solution process, since it rather turned out and can be seen as
one result of the experiment, that repeatedly, an idea which at first came
only as a rather superficial hint or an "apercu" which was not taken too
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seriously at the very moment of originating , later -extended" to a farther-
reaching strategy with more or less restricted substrategies. So, the abbrevi-
ated protocol versions contain solution elements of two different -levels- de-
fined by their respective range, even if the original protocols or a subsequent
analyse occasionally would admit to identify -intermediary- ranges.
The single solution steps have been classified by an easily identifiable denot-
ation, such as solving an inequality, comparison of angle measures, theorems
about central and inscribed angles, and assigned to a superordinated strategy.
Some of them are additionally characterized by the -place- of such an elem-
ent in the solution process. Demonstration problems contain steps (f.i. prop-
erties of a figure) which are equivalent to the givens , and those equivalent
to the goal property, steps which are immediate inferences from the givens,
steps following from the latter, steps immediately allowing to draw the final
conclusion, and steps preceding the latter. Corresponding -places- can be
attributed to single steps in construction problems.
These categories are included into the analysis, provided that any single step,
irrespective of whether or not correct, suggests such an identification.
Finally, a systematization of the figures on the sheets has been attempted. It
is based on the strategies recognizable in these figures.
Elaboration of the protocols, especially classifying the single steps into the
superordinated categories, depend on knowledge or remembrance of the orig
inal thoughts, which means that they can hardly be elaborated by an objective
observer.
As an example, a part of an abbreviated protocol will be presented.
It refers to the problem quoted above; two main strategies dominate the
process of its solution: finding a chain of triangles, for which certain pro-
portions formed by lengths of line segments can be stated, the product of
which by cancelling was expected to lead to the result 1, and some kind of
extending the figure, successively different tangents being concerned. The
work sheets number 57 to 72 show a mixture or a combination of both strat-
egies (which only occurred here), a phase determined by extending figures
with tangents strategy, and the last phase with the triangle chain strategy
before finally solving the problem by the further, the single steps subordinated
to the strategies, most of them characterized as expected to precede to any
proof step immediately allowing to draw the final consequence, and the res-
pective figure types with modifications.

Some results and critical remarks

The outcomes of the investigation contribute to our understanding of problem
solving processes in some aspects which are hardly accessible to other
methods of investigation. We can take the recorded problem solving proces-
ses as typical for a type of problems with non-routine character, determined,
as mentioned above, by a vastly extended repertory of well-defined means.
The most remarkable result is that problem solving processes are composed
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of different phases of distinctive course, more or less of increasing length,
in which search for a solution is directed by one main strategy, whereas the
partial steps in the framework of the strategy may show great variety.
The problem solving process starts with a series of rapidly changing attempts
to try out different and heterogeneous solution ideas; among these may well
be a successful one, which finally even turns out to lead to the solution, but
without being recognized in its role during this very initial phase. In the
course of the solution process, one or two, sometimes three of these solution
ideas increasingly form as farther reaching strategies and successively pre-
vail against others; but in case of failing success the superordinated strategy
Is abandoned (but later may be taken up again), and then an initial sequence
with rapidly changing steps leading up to a longer period of stabilizing new
strategy marks the beginning of the next unit under the predominance of a
strategy. There are not yet enough examples to definitely bear out this
structure of problem solving processes. It turned out that it is not easy to
find suitable problems in sufficient number for this purpose.
Another quite astonishing result is the fact that situational conditions have
unexpectedly high influence on the selection and assessment of the range of
a strategy. Preference given to a strategy arises from familiarity with it by
any context of working (a strategy being used shortly before the experiment
is preferred, and so on), by any "nice" result (even if this may be wrong) or
a seemingly smoothly flowing technique.
In the added example the successful strategy presumably was not recognized
by an incorrect figure suggesting wrong properties, an unseccessful strategy
favoured by a seemingly good result (as if standing shortly before the end,
but counterfeited by a computation error).
Not surprising is an effect which may cast some light on the method of
"thinking aloud". By far not all associations or ideas coming to conscience at
any time of the problem solving process actually are uttered or at least
sketchily formulated. It could be observed that several associations came into
conscience apparently simultaneously; one of them, representing the stronger
impulse, may suppress the others, which sometimes may come up later on
again by recalling any partial sequence of the problem solving process.
The attention claimed by the constraint to grasp all elements coming to con-
science seems to seriously interfere with the problem solving process itself;
otherwise certain unusual errors would not to be explained. Obviously, in order
to compensate both the attention directed to tho utterance or writing activity,
felt innervations or movements, and the considerable insecurity to be register-
ed, many repetitions of the same solution attempt are carried out. The verbal
formulations registered by tape show fairly bad style and many repetitions,
sounding (in the tape-recordings) as if uttered without concentration , seem
to be directed to catch weak remembrances. The urge to notice all conscious
thoughts is far away from usual problem solving situations and can be as-
sumed as affecting the results. And so is the condition to work on the prob-
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lems only in experimental situations, especially refraining from thinking of
the problems during the rest of the time (which actually was not to be kept
up; f.i. during a bus drive the author suddenly caught himself thinking of the
problem and after finding an advertising circular lying on a seat, used it to
write down at least the thoughts which had come up immediately before).
May-be the interferences by consciously controlling ourselves are comparable
to conditions impairing problem solvers by any other reason. Under these
aspects the susceptibility of problem solving processes to any interference
in general is confirmed by the experiment, too.
The urge only to work under rigid self-control conditions turned out to be
annoying, sometimes even galling or demotivating (as can be seen from sev-
eral remarks on the work sheets). The endeavour not to lose any impression
or idea lead to the feeling which can be described by the metaphor of trip-
ping oneself up.
Solution attempts carried out only under the condition to add remarks later
show far less associations and other accompanying elements. Most of the
latter must have been forgotten, until the second reading of the written lines
on the work sheets starts. So, retrospective comments are obviously incom-
plete and unsuffient, may-be even unreliable in their content.
It can be ascertained from the self-control experiment that our heuristical
strategies together with "superordinated" impulses and control instances re-
present an undeterminably complicated system of dispositions and tendencies,
and it can be assumed that only a small part of them actually become con-
scious. Only occasionally and partially we have conscious experience of com-
petitions between different strategies offered by our cognitive system, a kind
of uneasiness towards certain strategies, an impression of how near we are
to the goal, and so on. A typical situation where the latter is to be felt oc-
curs towards the end of the problem solving process, when we are irrevoc-
ably sure that we have found the solution, without having elaborated the
solution idea and before having done all necessary steps in detail; this feeling
even does not prevent us from committing errors, which then are experienced
as non-essential and not detracting us from our certitude. This feeling of
standing shortly before the goal is accompanied by an impression which can
be described as: "it" works in ourselves).
No result was discovered with respect to the appearance of the final solution
idea. F.i. during reading in a book on psychology of mathematical thinking
(namely Strunz, 1968) especially the chapter about problem solving a typically
extremely short idea suddenly flashed into the author's mind, to try out a
special attempt to solve one of the problems in question; and the accompany-
ing impression was: I shall try out the idea later on, not because I am con-
vinced of its productiveness, but only because of keeping to the experimental
conditions.
These findings are in line with results reported by many psychologists (for
details, see Ha damard, 1954). This view finds support by an author represent-
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mg quite another approach: namely by S. Freud's statement that the uncon-
scious 'search- readiness' is far more likely to lead to success than the con-
sciously directed attention" (Freud, 1941, p 178,- originally in German).
Finally, the findings cast some light to the frequently used method of thinking
aloud. This method has to be seen more critically, at least with respect to
problems demanding a high amount of concentration. Although the methodical
weakness of non-separating subject and object is the most serious objection
against the reported experiment, this experiment shows that thinking aloud
only partially reveals consciously experienced thoughts and even these not
always reliably.
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INFLUENCES OF TEACHER COGNITIVE/CONCEPTUAL LEVELS ON
PROBLEM-SOLVING INSTRUCTION

Barbara J. Dougherty
University of Hawaii - Manoa

The purpose of this study was to investigate cognitive levelsof eleven intermediate grade
teachers and their relationships with teacher mathematics conceptions, teacher problem-solving
conceptions, and problem-solving instructional practices. In a case study approach, teachers
were studied via written assessment (the Harvey's This I Believe Test), individual interviews,
and four problem-solving lesson observations. Strong relationships were found supporting
the theory that cognitive structures are relatedto instructional practices and conceptions about
mathematics and problem solving.

Introduction

Considerable attention has been given to teacher conceptions about subject matter and its

teaching and the way in which these conceptions filter into the instructional process (Cooney,

1985; Bush, Lamb, & Alsina, 1987; Thompson, 1982; McGalliard, 1988). How teachers act

on these conceptions may be a result of the cognitive organization of their knowledge and

beliefs. Individual cognitive configurations may impose a hierarchy upon factors encountered

in the classroom, focusing more attention on certain factors than on others. The general

cognitive premise that emphasizes the construction and accommodation of knowledge as it

relates to instructional decisions is the basis of this research.

Underlying psychological tenets are general with respect to overall cognitive levels that

help to characterize how an individual views his environment and impinging stimuli.

Structural characteristics of each cognitive level should be valid in specific contexts, such as

instructional situations involving the teaching of mathematical problem solving, and thus be

descriptive of overt acts (teaching practices) representative of particular levels. Hence, pairing

conceptions of mathematics and cognitions should provide a theoretical framework to explain

instructional practices used in problem-solving instruction.

The theoretical framework used to determine teacher cognitive levels is a set of

psychological attributes similar to those found in Harvey, Hunt, and Schroder's scheme

(Harvey, Hunt, & Schroder, 1961). Their scheme presents a hierarchic model of four broad

systems descriptive of ways an individual "establishes and maintains ties with the surrounding

world" (Harvey et al., 1961, p. 11). Each of the levels or systems is described as follows.
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The four cognitive systems lie on a concrete-abstract continuum. The most rigid of the

systems, A, is identified as concrete formalism. It is heavily rule governed with strong

reliance on a single Authority. Acceptance of new ideas is not specifically related to personal

experiences, but rather to the position of the Authority. An individual identified with this

system expects relatively uniform performance from all with little regard or expectations of

individual differences. Judgments and evaluations are polar, either right or wrong.

System B, social pluralism, emphasizes social utility and acceptance. While there is still

some reliance on a single Authority, an individual may look to others for guidance.

Acceptance of new ideas is based on their perceived social usefulness. Adequacy of others'

performance is dependent on how well it conforms to existing social structures. Personal

performance is based on the likelihood of social acceptance and judgment and evaluations may

change from one social context to another but with the same regard for correct- incorrect.

Individual of level C, integrated pluralism, realize multiple viewpoints or authorities exist

but tend to rely on a single Authority. Acceptance of new ideas is contextually dependent and

may still be socially related. Adequacy of others' performance may change from one context

to another. Personal performance is judged with respect to the given situation and judgments

and evaluations are contextual bound with little recognition that they differ from one context to

another.

System D, abstract constructivism, is the most abstract or flexible of the four systems. It

is characterized by autonomous thinking with respect for others' opinions and views. Multiple

views are weighed before adopting a new idea or integrating into existing structures.

Individual differences are expected and tolerated and personal performance is flexibly

assessed. Multiple choices are explored before any judgments or evaluations are made.

Teacher conceptions about mathematics, specific topics, and instruction should relate

significantly to the overall cognitive level. Because knowledge is organized relative to the

features to which one attends, resulting structures should reflect attributes compatible with,

and representative of, the cognitive level.

Thus, cognitive structures are responsible for an individual's general behavior and their

influence can be felt in specific contexts that require active involvement as in the act of
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teaching. The extent to which these structures encroach on instructional decision-making

processes has not been fully explored in specific subject matter areas such as mathematical

problem solving. With renewed emphasis on altering teaching practices related to problem

solving, more insight is needed regarding the influences on teacher decisions about those

suggested practices and resulting implementations. The overall significance of this study lies

in its potential to link instructional practices to teacher cognitive levels and thus deepen our

understanding of this fundamental relationship.

Methodology

The voluntary sample includes eleven intermediate grade teachers (4th, 5th, and 6th

grades) from four school districts in the Midwest. To gain an understanding of teacher

cognitive level, the This I Believe Test (TIB) (Harvey, 1989), a written, open-ended paragraph

instrument, was administered. Completed assessments were sent to Dr. 0. J. Harvey for

evaluation and results were not revealed to the investigator until all observations and interview

analyses were completed.

Individual teacher interviews were used to ascertain teacher conceptions of mathematics,

problem solving, and instructional aspects of both. Seventeen interview protocol questions

were developed from those used in other studies (Grouws, Good, & Dougherty, in progress;

Brown, personal communication, November, 1988) and piloted with preservice and inservice

teachers not affiliated with the study.

An observation coding instrument was used to record field notes and quantitative data

obtained during classroom observations. These observations were made in an effort to

observe and record instructional practices in a naturalistic setting and to capture consistencies

between practices and cognitive levels, as well as among mathematics and problem-solving

conceptions, and practices. Classroom variables to be observed included, butwere not limited
to: amount of time spent on lesson development, types of problems selected for examples

during development, teaching techniques used for problem-solving instruction, teacher use and

types of questioning, teacher modeling, lesson format, and so on.

To minimize the effects of different mathematics content, four problem-solving lesson

outlines were given to teachers in an effort to have them focus on one particularcontent strand
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with specific objectives. Each outline included lesson objectives (short-term) and suggestions

for example problems but gave no instructional recommendations, scripts or other aids. The

problems were structured so that teachers had their choice among those with an algorithmic

solution (usually computation), practical application, or creative solution involving higher-

thinking skills but teachers were not explicitly told which type each problem was. Four

heuristics were used as objectives and included: (1) guess-and-test, (2) work backwards, (3)

make a diagram, and (4) make a table and/or find a pattern.

Results

To obtain the best possible evaluation of teacher responses onthe This I Believe Test, Dr.

0. J. Harvey scored the test with regard to concrete orabstract levels as well as other specific

dimensions that included evaluativeness (tendency to make evaluative judgments), richness-

complexity (depth of thought expressed), and openness (willingness to seriously consider, or

accept, a position contrary to his/her own view on a central issue).

Eight teachers are considered to have a dominant systemA, indicating the most concrete

of the four levels, and, in progression toward abstractness, each of the other three systems (B,

C, and D) are identified with one teacher each (see Table 1). This distribution is not surprising

since other studies have revealed few elementary teachers in the abstract domain.

Table 1

This I Believe Test Results

Teacher ID
No.

Dominant
System

Secondary
System

Evaluative-
ness

Richness-
Complexity

Openness

0104 A 4 2 1

0106 A 5 I 1

0204 A 3 4 3

0206 A B 3 5 3

03015 A 4 2 2

03061 A C 3 3 3

05051 A 3 2 5"

05061 A B 3 3 3

0105 B C 5 3 2

05042 C A 2 3 4

05041 D 2 5 5

Note: 1 indicates low strength, 7 high strength
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Responses to specific questions from the interview protocol indicate how the teacher

views mathematics as a discipline. Four categories are used for response classification: (1)

Mathematics is a set of rules and procedures, (2) Mathematics is a tool for everyday life, (3)

Mathematics is an application of logical thinking and/or step-by-step methods, and (4)

Mathematics is experiential and not a static body of knowledge. Considering a concrete-

abstract continuum for mathematics conceptions, it appears that the first three conceptions are

at a more concrete level than the fourth classification. By comparing conception response with

functioning level, one can see that there are apparent relationships (see Table 2).

Table 2

Mathematics Conceptions Groups Compared to Cognitive Level

Teacher ID no. Cognitive level Mathematics conception
0104 A 1

0106 A 1

0204 A 1

0206 A 2
03051 A I
03061 A 3
05051 A I
05061 A 2
0105 B 2
05042 C 3
05041 D 4

Note: 1. Mathematics is a set of rules and procedures, 2. Mathematics is a tool for
everyday life, 3. Mathematics is an application of logical thinking and/or step-by-step
methods, and 4. Mathematics is experiential and not a static body of knowledge.

Using the classification scheme developed by Grouws, Good, and Dougherty (in

progress), teacher responses regarding their definition of problem solving are placed in one of

four categories: (1) Problem solving is word problems, (2) Problem solving is finding

solutions to problems, (3) Problem solving is solving practical problems, and (4) Problem

solving is solving thinking problems. Table 3 shows comparisons of teacher conceptions with

their cognitive level.
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Table 3

Problem-Solving Conceptions. Mathematics Conceptions, and Cognitive Levels

Teacher ID no. Cognitive level Mathematics
conception
l

Problem-Solving
conception
10104 A

0106 A 1 2

0204 A 1 2

0206 A 2 3

03051 A 1 3

03061 A 3 2

05051 A 1 1

05061 A 2 3

0105 B 2 3

05042 C 3 3

05041 D 4 4

Note: Problem-solving conception 1: Problem solving is word problems, 2: Problem solving
is finding solutions, 3: Problem solving is solving practical problems, 4: Problem solving is

solving thinking problems.

Few consistent and direct relationships between problem-solving conceptions and

mathematics conceptions are found. However, if concrete-abstract conceptions are examined,

it is evident that the larger grouping of more concrete mathematics conceptions (mathematics is

a set of rules and procedures, mathematics is a tool for everyday life, and mathematics is

applications of logical thinking and/or step-by-step methods) corresponds to the concrete

grouping of problem-solving conceptions (problem solving is word problems, problem

solving is finding solutions, and problem solving is solving practicalproblems). All teachers

describing mathematics in a concrete way defined problem solving in the same manner, and

conversely. The same is true of the abstract aspect.

During the entire mathematics period, classroom observation data include the amount of

time spent on lesson development. Cognitive levels A, B, C, and D have mean lesson

development times of 18.8, 20.5, 30.0 and 38.8 minutes, respectively and corresponding

standard deviations of 7.6, 12.3, 7.2, and 9.3. There is a noticeable increase in mean times as

the level of abstractness increases. As these means are monotone increasing, they suggest

practical differences in development time.
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Observations demonstrate strong consistencies between cognitive level qualities and

instructional practices specific to mathematical problem solving. In particular, individuals

associated with the cognitive level A use teacher-directed lessons, dogmatically adhering to

lesson objectives. Teaching practices succumb to an inability to effectively deal with

ambiguity that could occur if student input is predominate or if no prescription is given for

finding problem solutions. Consequently, an approach similar to an algorithmic or

mechanistic style dominated problem-solving activities and instruction. That is, little deviation

from predetermined solution methods is observed and students are expected to conform to

teacher modeling as if following some particular rule. Evaluation of student responses is

dichotomous, typically correct-incorrect, and is based on procedural aspects, again related to a

teacher need for structure. Teachers demonstrate an inability to restructure mathematical

content or to present multiple representations in the event of student difficulty.

Cognitive level B attributes and instructional practices also indicate consistencies.

Specifically, the social utility of problem solving is alluded to in each lesson and chosen

example and practice problems are perceived by the teacher as useful in student daily life.

There is less tendency to mandate solution processes but nevertheless, objective strategies are

generally used. Often, teacher comments reflect the importance placed on student self-worth

and their role in the classroom society as a possible result of the social context and structure

influence.

Cognitive level C practices are systematic instruction. Instructional practices tend to be

easily influenced by others' opinions, in particular, another fourth grade teacher, or materials

supplied by that teacher. Problem-solving instruction was considered different than other

mathematics instruction in that logical thinking was needed to be successful. Hence, different

instructional contexts do imply different teaching approaches..

Abstract level D and its associated instructional practices show robust consistencies.

Since individual differences are respected and tolerated, the teacher highly regarded student

opinions and encouraged them to be creative in their thinking. Concomitantly, teacher

reactions to student discussion reflected an appreciation of divergent thoughts and of individual

differences. The autonomy and flexibility of level D's thinking processes are evident in the
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teacher's desire for students to assume responsibility for contributing meaningful explanations

and presentations to the lesson.

Conclusions

Conceptions alone, as Thompson points out (1982), are not simply related to instructional

practices. Nevertheless, this study found relatively high consistencies among cognitive levels,

conceptions, and instructional practices. Although caution should be exercised in making

conclusive statements due to the complexity of the subject matter as well as tothe small sample

size, the findings supported the original hypotheses. That is, teacher cognitive levels are

related to their conceptions about mathematics and instruction on specific topics.

Consequently, instructional acts portray cognitive level qualities in quite a distinct manner.
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CAN TEACHERS EVALUATE PROBLEP, SOLVING ABILITY?
Frederick O. Flener Northeastern Illinois University, Chicago ILJulia Reedy Saint Viator High School, Arlington Heights IL

Hypothetical students' solutions to mathematical problems were
sent to 2200 teachers in the Chicago area, with 446 responses.
The purpose was to examine the consistency among teachers in
evaluating solutions, and to investigate their reaction to
solutions having considerable insight. There was considerable
variation among teachers in grading the solutions. and lessthan 25% of the teachers appeared to give credit for creative
solutions of the problems,

Related Background Information

Problem solving has been the focal point of mathematics education

for more than a decade. Research has followed three separate, but not

independent, paths; psychological, curricular and pedagogical. The

psychological aspects of problem'solving has been centered primarily

on characteristics of the problem solver, examining traits like

ability levels or cognitive development (e.g. Confrey. Dienes.

Krutetskii, Schoenfeld) The curricular focus has been on the nature

of problems appropriate for the schools, and the research has been

broad (NCTM Standards, or the University of Chicago's School

Mathematics Project) and generally has been influenced by external

factors such as international studies or reports from national-1

organizations and federal agencies.

The study reported here is in the area of pedagogical research.

for which there has been research with respect to problem solving.

Much of the focus in this category has been on the so-called

"effective teaching" research (Grouws et al. Ducharme and tluender),

and some of the findings may actually be counterproductive when

teaching problem solving. Let me explain.

It would seem reasonable to assume that the concept of problem

solving, as it is used in mathematics education, is clearly

understood, but it is not. Not only is there a lack of agreement as

to what the expression, "problem solving" means, many judiciously

avoid defining it. In the 1980 NCTM Yearbook on problem solving, none

of the 22 articles contained a specific definition of the term. The

BEST COPY AVAILABLE i
205



closest was in a chapter written by Kantowski: she briefly states what

she considers to be a "problem,"

A problem is a situation for which the individual who confronts

it has no algorithm that will guarantee a solution. That

person s relevant knowledge must be put together in a new way to

solve the problem. (p. 195)

The paradox is that if the purpose of teaching is to have students

acquire the knowledge to solve problems, can teachers confront

students with content for which for which they "have no algorithm that

will guarantee a solution." Effective teaching research reports that

clarity of presentation is highly correlated with student achievement.

and teachers assume their students must be equipped with all the

necessary concepts and skills needed'to solve what problems are posed.

They believe they should clearly present the -algorithms that will

guarantee solutions- of the problems.

Teachers in the United States, almost uniquely among teachers

throughout the developed world have the dual--albeit sometimes

contradictory--responsibility of both teaching and assessing learning.

They are expected to "teach" a specified body of knowledge, then

determine if the students "learned." If students have not learned.

who is at fault? Was the material not presented clearly, or did the

students lack ability' It is not easy to determine the cause, and it

is even more difficult when measuring problem solving achievement.

If solving a problem is taking relevant knowledge and "put(ting

it) together in a new way," then how does a teacher determine a

student's ability to do so? If a student cannot solve such problems.

does the student have a reasonable complaint by saying. "You never

taught us how to do this type of problem."? Teachers often respond by

not testing for problem solving. Problems on tests are only those

which were discussed in the class. Furthermore, insightful solutions

may be disrt,: ssed as incorrect. The methods of solution must be those

that were taught: creative solutions are not accepted.
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The motivation for this study stems from an exercise given in a

graduate level test construction course. The students, who were also

teachers, were shown hypothetical solutions to two algebraic problems

and were asked to evaluate the solutions. The solutions of one

student, "Allen," were assumed to be complete, methodical solutions.

Three of the students had various types of errors in their solutions.

One student, "Betty", had the correct answers, but the solutions

implied a high degree of insight, not using procedures which are

normally "taught." There was considerable inconsistency among the

graduate students in grading the solutions, but the grading of Betty's

solutions was highly enlightening. Her solutions were given a full

range from "0" through "10" by the graduate students. One teacher

who gave O's said that it was obvious the student did not use the

methods which were taught, and should not be given credit for merely

finding the answer. Apparently, for this teacher, creative problem

solving is not a trait to be measured on a test. How pervasive is

such an attitude among teachers? The exercise led to the

investigation of a larger sample of secondary mathematics teachers.

Can teachers recognize solutions which show "reasoning and

creative thinking" instead of taught procedures, on a test hdw much

credit will they give to such solutions, and is there consistency

among teachers in evaluating students' solutions to problems?

Generally, there were two research hypotheses tested in this project.

Hypothesis 1: When grading student solutions to mathematical
problems, secondary teachers will recognize and give
credit for insightful, creative solutions.

Hypothesis 2. Teachers will use a conceptually consistent
methodology when evaluating students solutions to
mathematical problems.

Methodology:

The solutions to two mathematical problems from the five

hypothetical students were sent to approximately 2200 secondary

mathematics teachers in the Chicago area. The teachers were asked to
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to "grade" the solutions using a 0 - 10 point scale. The following

are examples of solutions from three students for one of the problems.

1. Shu had a train ticket to Kalamazoo. He noticed the number on

his ticket was two-digit number, and that the sum of the digits

is 18. He said. "if five times the first digit is added to six

times the second digit. the result is equal to the original

number." What is the original number.

The three students' solutions were given as follows:

Allen Betty Diane

x y 18 Obviously!! x y - 18

Sx 6y 10x y Sx 6y - x y

-Sx+ Sy 0 or. 99 4x Sy - 0

-5x -Sy
x y

x + x 18

or, -4x 4y -72

adding, y - -72
4x 5(-72) - 0

2x 18
4x - 360

x - 9 and y - 9
x - 90

99
90 - 18 - 72

The teachers" grades were recorded to examine variation among the

teachers, and their evaluations were classified into four categories

according to the implied procedures used in grading.

I. Absolutes These are responses from teachers who grade the

solutions as fully correct or incorrect.

II. Methodology Centered These are responses from teachers who

appear to weigh the credit according to the degree to which the

"taught" algebraic methods are shown.

III. Problem Solving Centered These are responses from teachers who

recognize and give the credit for both knowledge and insight

demonstrated by the solutions.

IV. Unclear Evaluators Responses for which there is no apparent

pattern.

After the responses were organized and classified, a random

sample of the teachers from each of the categories were selected for

follow-up telephone interviews:

Results

A summary of the teacher response is shown in Table 1. After

the tabulation of responses, they were classified according to the

criteria which is given following Table 1.
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Table 1: Summary of Teacher Responses

Student: Allen Betty Chuck Diane ErnieScore #1 #2 #1 #2 #1 #2 #1 #2 #1 #2
0 0 1 93 73 73 294 45 44 21 21
1 1 2 62 32 16 43 18 20 2 1
2 1 1 90 58 83 66 100 89 12 13
3 2 1 18 25 70 19 88 55 29 14
4 0 1 17 26 60 19 70 64 65 25
5 3 3 60 49 64 19 65 45 106 78
6 6 5 4 10 30 2 28 27 96 58
7 2 4 7 19 26 0 18 17 59 75
8 32 23 9 26 19 0 14 24 50 132
9 38 24 4 7 0 1 0 6 5 26

10. 361 381 82 121 5 5 0 55 1 3
Total 446 446 446 446 446 446 446 446 446 446Mean 9.6 9.6 3.8 5.0 3.3 1:1 3.4 4.3 5.3 6/2Range 9 10 10 10 10 10 8 10 10 10

SD 1.07 1.44 3.80 3.87 2.34 1.81 1.98 3.03 1.95 2.18

I. Absolutes There was no apparent partial credit. Solutions were

scored as 0. 5 or 10 depending on whether the answer was correct

regardless of the method of solution. Forty five of the

respondents (10%) were placed in this category.

II. Methodology Centered Solutions appeared to be given credit

according to algebraic methods shown in the solution. The

answer sheets ranked the students on the basis of the algebraic

information included in the solution. 191 of the respondents

(43'.) were placed in this category.

III. Problem Solving Centered These responses appeared to give

credit to the solutions which were solved with insight and

creative thought as well as with algebraic methods. 100 of the

respondents (22%) were placed in this category.

IV. Unclear Evaluators Those for which no pattern was apparent.

110 of the respondents (25%) were placed in this category.

Telephone interviews were then conducted: and although the

interviews were generally informal five specific question were asked.

(1) Do you present problems in class for which the method for

solving the problem has not been? (2) How often do you try to

evaluate students' problem solving abilities? (3) Approximately what

percentage of your tests involve solving problems which were not

BEST COPY AVAILABLE
131 209



presented in class? (4) Briefly. how do you divide up the points when

grading solutions to word problems? (5) Would you give students

credit for solving a problem through reasoning and creative thinking

or would you expect them to use the procedures taught in class?" (If

the teacher said "No" he was then asked if he had a particular reason

for not giving credit?)

Three "Absolutes" were called for interviews. All three said

that they rarely present problems in class for which the methods for

solving have not been taught:they rarely test for problem solving

ability, but they would give credit for creative thinking if the

solution was valid and the work was shown.

Nineteen "Methodology Centered" respondent. were called. There

was considerable variation in the degree to which they claimed they

covered problem solving or tested for it. They claimed to be explicit

when grading solutions, giving points for specific tasks such as

defining the variables, determining the equations and correctly

solving the problem. They also said that they would give credit for

creative reasoning, provided the equations and solution was reported.

Ten "Problem Solving Centered" teachers were contacted. Nine

said they presented problems in class which had not been previously

introduced in class. A few said they did so with the stipulation that

the problem be related to the objectives. Nine said they evaluate

problem solving ability at least once a week, but there was

considerable variance in the percentage of a test given to problem

solving. Some said they would give credit for creative solutions, but

that they did want to know how the students arrive at their answers.

Thirty of the "Unclear Evaluators- were called in follow-up

interviews, and it was difficult to determine any response patterns to

the Interview questions. The one'pattern which did emerge was that,

like the "Absolutes," these teachers did not give much emphasis to

problem solving either in teaching or testing. It may be an invalid

conclusion, but it is possible that many of the teachers in this
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category did not have a clear understanding of problem solving, and

therefore had difficulty evaluating students' solutions.

Discussion

Statistical analysis of the data does not appear to be necessary

to be demonstrate the serious problem which exists when teachers are

asked to evaluate students solutions to mathematical problems. For

almost every solution there was a range of 10 points. This was true

for even the solutions that were completely correct (Allen) or

completely (Diane). Why did some of the teachers give very low scores

to Allen's solutions? Was it because the digits were represented by

"x".and "y" instead of the traditional "t" and "u"?

What happens if students such as Betty use insight to solve the

problem? Can teachers not recognize it, or worse yet do they

penalize the student? More teachers (93) gave her no credit than gave

her full credit (82). About 78% of the responding teachers either had

diff.culty grading problem solving or only gave credit for methods

which were taught in class. Only 22% appeared to be measuring problem

solving ability. If these data be reasonably inferred to the general

mathematics teaching population, it seems to imply that problem

solving as proposed by the mathematics education community is not

going to be easily accepted by the current teaching force.
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TEACHER CONCEPTIONS ABOUT PROBLEM SOLVING AND PROBLEM-
SOLVING INSTRUCTION

Douglas A. Grouwt, Thomas A. Good, and Barbara J. Dougherty
University of Missouri - Columbia, University of Hawaii

Twenty-five junior high teachers were interviewed to determine their conceptions about
problem solving and its instruction. Teacher responses were grouped by common
characteristics of their descriptions of problem solving and a classification framework
consisting of four categories emerged. These include: (1) Problem solving is word
problems, (2) Problem solving is solving problems, (3) Problem solving is solving practical
problems, and (4) Problem solving is solving thinking problems. While some relationships
were evident between conception and reported instructional practices, other aspects of
instruction were heavily influenced by external factors such as textbooks, district
expectations, and standardized testing and were similar across all teacher responses.

Introduction

A crucial dimension that impacts teacher decision-making is teacher conceptions of

mathematics and mathematics instruction. Thompson (1984) indicates that conceptions of the

subject matter and its teaching influence teaching actions. She points out that "teachers

develop patterns of behavior that are characteristic of their instructional practice. In some

cases, these patterns may be manifestations of consciously held notions, beliefs, and

preferences that act as 'driving forces' in shaping the teacher's behavior" (p. 105). It is clear

that without a better understanding of teacher conceptions and the role they play in the

decision-making process, little progress can be made in improving the quality of school

mathematics programs. Because the subject matter of mathematics is comprised of many

strands, it is hypothesized that teachers will view each strand differently, yet with some

characteristics inherent in their own views about mathematics. Therefore, the purpose of this

research study is to deepen our understanding of teacher conceptions specifically within the

mathematical problem-solving instruction domain.

Methodology

Twenty-five teachers drawn from eight junior high schools in a large midwestem school

district comprised the sample. The volunteer sample represented over 80 percent of the junior

high mathematics teachers in the district. Together they taught 119 classes composed of more

than 2500 students. The SES level of the schools in the district ranged from lower-middle to

upper-middle class.
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Using a pilot-tested protocol, teachers were individually interviewed for approximately

50-55 minutes concerning their beliefs and teaching practices, with special attention to

problem solving. At the beginning of the interview teachers were reminded that although

problem solving was important there was not a consensus about what it means or how it

should be taught. They were asked to be candid in their responses and reminded that all data

collected were confidential. Discussions were audiotaped and later transcribed.

Transcribed interviews were analyzed to identify patterns of responses and to detect

relationships among the responses. In some cases responses could be classified using a

simple yes-no system, while in other cases, responses were classified using a multi-

categorical system. In situations where there was a possibility of coder reliability problems,

consistency of classification checks were done using multiple coders.

Results

Discussion of results will focus on identified dimensions important to instruction. These

include: (1) problem-solving conceptions, (2) lessons goals and related instructional

methods, (3) format of problem-solving lessons, (4) time allotted to problem-solving

instruction, and (5) student affective factors. In some instances, direct relationshipsamong

these aspects are clear; other times, responses across all teachers are similar and show no

specificity to any particular group.

Problem-Solving Conceptions

To help determine the sample teachers' definition of problem solving, they were asked to

state in their own words how they would define the term. Careful assessment of their

responses showed they clustered into four distinct categories. Many of their responses

clearly focused on types of problems while others centered on features of the problem-

solving process. The four conceptualizations identified were: (1) Problem solving is word

problems; (2) Problem solving is finding the solutions to problems; (3) Problem solving is

solving practical problems; and (4) Problem solving is solving thinking problems. The first

three definitions focus on the nature of a problem and its computational aspects while the last

one is primarily concerned with processes involved in finding a solution.
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About one-fourth of the teachers (n=6) felt problem solving could be defined as word

problems. The mode of presentation of the problem situation was the determining factor--it

must be stated in words. It was often mentioned that these problems could be solved by

applying computation or by transforming the problem into an equation and solving. None of

these teachers mentioned problem or solution complexity as part of their discussion of what

constitutes problem solving and, in fact, most of the problems teachers mentioned as

examples were from textbooks. Analyzing a strategy game (e.g., Nim), physically

demonstrating the possibility of a spatial arrangement (e.g., Polyominos), finding a pattern,

and so on, were clearly lint a part of their conception of problem solving. The level of

thinking required in tasks was not a consideration.

The largest group of teacher responses (n=10) emphasized problem solving as the

solving of problems. Some mentioned that students did not have to be doing word problems

(the criteria for the previous conception group) to be involved problem-solving tasks.

Instead, any time students found an answer to a mathematical problem, they were doing

problem solving. Processes of finding solutions were interpreted as problem solving, but

process had a distinct connotation for these teachers. The emphasis was clearly on step-by-

step adherence to predetermined guidelines. Many teachers mentioned a four-step approach

that students must follow to successfully solve problems: (1) read the problem, (2) determine

what the problem is asking, (3) solve the problem, and (4) check the work. Each response

indicated that the third step involved computations or setting up equations.

The third category (n=3) emphasized a different problem feature: contextual situation.

These teachers consistently discussed solving problems of a practical nature. Example

problems consisted of what teachers perceived to be real-life situations, but the solution

process of those problems were applied computations. Teacher responses indicated a belief

that students should solve problems like these to be better able to transfer their learning and

understanding to situations encountered outside the classroom, such as at work or home,

where they must function without the aid of the teacher. Problem focus, however, was very

narrow, involving checkbook, discount, and purchase tasks.
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The remaining teachers (n=6) suggested that problem solving is solving thinking

problems. The incorporation of ideas into the solution process was a primary focus in

responses of this category. Problems mentioned by these teachers required the useof

something new and different, a novel approach that had not been practiced by students. The

idea of nonroutine problems was frequently mentioned and most example problems required

a high level of thinking. Teachers expressed a desire that students use creative solution

techniques and find multiple solutions to problems.

Lesson Goals and Related Instructional Methods

Primary goals in problem-solving lessons were reported across all teacher responses as

those that teach students how to solve problems, use thinking skills to become more

sensitized to reasonable answers, and to develop logical reasoning skills. No specificity to

problem-solving conceptions could be detected in teacher reports of specific problem-solving

lesson goals.

To attain these goals, many from each conceptualization reported using the four- or five-

step general approach to problem solving usually advocated by most textbook series (ie., (1)

read the problem, (2) decide what operation to use, (3) solve the problem, and (4) check your

answer) and became the backbone of their instruction. Teachers were adamant about having

students read the problem as many times as necessary to glean insight into what the problem

was asking.

The next step of the process description varied from teacher to teacher but they all

seemed to mean the same thing: find what the problem asks. The algebra teachers tended to

operationalize this as defining a variable whereas the general mathematics teachers thought of

it as deciding what operation to use. All of the teachers in the fourth problem-solving

conceptualization (problem solving is solving thinking problems) mentioned they would

encourage students to use a strategy such as make a list, table, or chart; fmd a simpler related

problem; or draw a picture. (Interestingly, some teachers commented that guess-and-test

should not be used because it was not an acceptable mathematical method.)

The third stage had basically the same meaning for all teachers: solve the problem and

get a correct answer. It was in the fourth step that some differences among teachers were
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noted. The majority of teachers indicated they had students go back over computations to

find errors, but a few, including all teachers in the fourth conceptualization, said they made

students take a closer look at the question the problem posed to see if their answer made

sense or actually answered the question. None of the teachers, however, suggested problem

extensions or generalizations as part of the fourth step.

Mention of a key-words strategy was scattered throughout some responses. Several

teachers felt reading skills were so low that keyword lists were a necessary component of

successful problem solving. The lists they compiled included words such as altogether

which was to be taken to mean add, left to mean subtract, and so on and were posted on

blackboards for students to refer to as they solved problems. The fourth definition category

"problem solving is solving thinking problems" did not have any teachers indicating they

used the keyword approach while the majority of teachers in the other categories relied on it

as a method to improve problem-solving skills.

Some teachers expressed frustration in not being able to help students understand how to

solve problems better. They felt that students either know how to proceed or not. If not,

then teachers were at a loss as to what to do to help them approach a problem. They did not

know what kinds of questions to ask or what hints to give.

All teachers were concerned about getting students to the point where they could solve

problems and get a correct answer. They found this difficult due to their perceived inability

to motivate or direct students and also to perceived student deficiencies in content and

interest.

Format of Problem-Solving Lessons

There was considerable similarity in teacher descriptions of a typical problem-solving

lesson. Instruction usually began as a teacher-directed activity with the teacher modeling the

problem-solving process in the hope students would emulate those behaviors when

confronted with problem situations on their own. For most teachers, this meant that the exact

solution procedure they would like to see is presented at the chalkboard along with

guidelines, such as show all your work, begin by defining a variable, and so on. After

modeling, teachers presented problems to students and provided time for them to work
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individually with little intervention or guidance, unless it was student initiated. None of the

teachers provided explanations of how they draw these experiences together for students,

either during that specific lesson or in subsequent lessons. One can assume that this was not

part of a typical lesson.

Controlling factors of a lesson (factors that guide decisions about the flow of the lesson)

influence teachers as they determine exactly what is to be presented. In this sample, those

factors tended to be directly related to teacher needs or to external factors not associated with

students. Teachers reported that they drove the lesson in the direction they felt was most

appropriate, or, alternately, they closely followed the textbook presentation. In neither case

were student needs nor responses used to determine lesson flow and direction.

During the modeling portion of lesson, textbook problems provided examples for most

teachers. The teacher's text edition often gave similar problems to what would be assigned

for independent seatwork or homework and, thus, they felt comfortable and justified in using

them. Often, problems from the homework set were used as examples so students could

specifically see how to pattern their work on other problems. (Or, teachers would provide

clues on how to solve all the homework problems in what they called an attempt to reduce

student anxiety levels.)

Time Allotted to Problem-Solving Instruction

Time considerations were common to a variety of responses. Teachers often complained

there was not enough time during the class period to do problem-solving activities. It was

clear that these teachers felt problem solving was a distinct topic and was not integrated

within other strands. In light of this view, it was surprising that, with an emphasis on

needing more time, teachers did not indicate they had revamped the structure of their class

time (ie. decreased seatwork time, graded homework in a different manner, and so on) to

allow for a longer development portion of the lesson during problem-solving instruction nor

to accommodate separate problem-solving activities as warm-ups or supplements to other

lessons.

There was also concern expressed about the role of problem-solving instruction during

the course of the entire school year. These teachers felt some topics in the curriculum were
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pushed by the school district and were primarily computational. Also, with the emphasis the

district placed on standardized test results, teachers felt students needed to review topics prior

to the test administration. Thus, the amount of time left for what teachers considered

important (e.g., problem solving) was minimal. It was quite clear that in reality problem

solving is far down the list when instructional time is allocated. No teachers were found who

did problem-solving work first and then searched for time to squeeze other things into the

curriculum or integrated problem solving and other topics.

Student Affective Factors

Teachers expressed the view that students are frustrated by problem-solving tasks and,

as a result, have lowered self-confidence. When this occurred, teachers felt that teaching

became a much more difficult task because students presented more management problems

such as being off-task and were harder to motivate. To give their students more confidence

to attack problem-solving activities, teachers preferred modeling problem solutions so that

students would have guidelines to follow as they attempted problems on their own.

Teachers generally did not expect students to perform well on problem-solving tasks.

Lowered expectation levels could prove detrimental because students become aware that

feigning incapability usually resulted in an increase in teacher assistance or a decrease in the

number of'homework problems. And, teachers reported such an increase in student requests

for help did occur during problem-solving lessons. They attributed it to low student success

rates and self-confidence.

Summary

We are beginning to better understand teacher beliefs and conceptualizations about

problem solving. In particular, it now seems clear that problem solving has varied meanings

and these may differentially influence many aspects of the problem-solving instructional

process. Specifically, teacher responses were captured into four conception groups:

(1)Problem solving is word problems, (2) Problem solving is solving problems, (3) Problem

solving is solving practical problems, and (4) Problem solving is solving thinking problems.

Relationships between conceptions and particular instructional practices in some instances are

clear. For example, the use of problems stated in words, particularly of the variety found in
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most textbooks, provided the impetus for problem-solving lessons for those teachers that

believe problem solving is word problems. Teachers that view problem solving as the

solving of practical problems tend to use real-life situations as the motivation for their

lessons. Further, their goals include the desire to help students become independent and

functional in problem-solving contexts outside the classroom. Similar relationships exist

between other conceptions and problem-solving instruction.

Many factors were reported as influences on problem-solving instruction; some are

teacher-controlled and others external to the immediate classroom environment. Based on our

data, the textbook is the external factor that most heavily influences classroom practices.

Other influences mentioned in our interviews include: classroom management

considerations, perceived student ability levels, standardized tests, and, of course, teacher

conceptions of problem solving.

With the identification Of variability in conceptions about problem solving, areas where

problem-solving instructional practices seem to differ, and important external factors,

informed naturalistic studies involving observations can now focus on links between

problem-solving instruction and teacher beliefs: The relationships among these factors are no

doubt complex. In fact, we now know that we must carefully describe what is meant when a

teacher gives critical importance to problem solving and its instruction in her classroom.

Similarly, we must probe the tradeoffs that occur between conceptions about problem-solving

instruction and powerful external factors such as textbooks and standardized testing.

Although the relationships between conceptions and practice are not simple, it is essential to

arrive at an understanding of them if we are to understand and improve problem solving

instruction in matheinatics.
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MATH TEACHERS AND GENDER DIFFERENCES IN MATH ACHIEVEMENT,

MATH PARTICIPATION AND ATTITUDES TOWARDS MATH
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University of Groningen, The Netherlands

ABSTRACT

The influence of math teachers on gender differences in

achievement, attitudes and participation was investigated by

means of questionnaires and observations. It is concluded that

there are small differences in achievement and large

differences in attitudes and participation, but that these

differences cannot be attributed to the math teachers.

INTRODUCTION

It has been found that Dutch math teachers in secondary education have

different perceptions and expectations of girls and boys on math

relevant dimensions (Jungbluth, 1982; Van der Werf et al., 1984).

It has been suggested that because of these differences math

teachers treat girls and boys differently during their lessons, which

in turn helps to create the large gender differences in math

participation, as soon as math is no longer compulsory. A research

project* was undertaken in order to test these suggestions. This papei

focuses on the influence of math teachers on gender differences in

achievement and participation and in attitudes towards math on the one

hand, and teacher student interactions on the other hand. If it

appears that different teachers do have an effect on the gender

differences, i.e. if the TeacherxGender interaction is significant,

this effect may be explained by different teacher behaviors towards

girls and boys. This is tested with multi-level analysis (Aitkin &

Longford, 1986).

* SVO-grant numbers 4227 and 7100.
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METHOD

The research was conducted at the three levels of Dutch general

formative secondary education, MAYO (Low Level: LL), HAVO (Medium

Level: ML) and VWO (High Level: HL).

Data collection took place during the spring of 1986 (Take 1) and

1987 (Take 2). At Take I students in the grade before and the

grade of the choice of examination subjects were investigated. At.

Take 2 these students, who were now respectively in the grade of

and the grade after the choice, were investigated again, and many

new ones. The longitudinal aspect is not relevant for this paper and

is therefore neglected. More than 5800 students and their teachers

participated.

Variables of interest are: 1) teacher perceptions of girls and boys

in general, 2) teacher expectations of individual students, 3)

frequencies of teacher - student interactions, 4) marks on math, 5)

intended and actual math participation. 6) attitudes towards math, and

7) perceptions of the teachers' behaviors during math lessons. These

variables are explained together with the results in the next section.

RESULTS

First the teacher perceptions and expectations .are discussed shortly

and the teacher - student interactions in some detail. Next the gender

differences on the four groups of student variables are presented.

Finally the Teacher effect on the student variables is reported.

Teacher perceptions and expectations

1. It appears that tidiness is attributed more to girls than to boys

by three quarters of the teachers; industriousness is also seen as

more typical for girls and disturbing order as more typical for

boys. No difference between the sexes is indicated on

unattentiveness. taking initiative and studiousness.

2. For each student the teachers were asked three questions.

It appears that more boys than girls are expected to choose math and

that more boys than girls will be advised to choose math. On the last

question Do you think this student could do better on math than

appearing from her/his achievements? (4-point scale) the overall

difference is 0.2 in favor of the boys.
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Teacher - student interactions

3. These interactions were measured by means of observations. The

purpose of these observations was two-fold: to investigate whether

girls and boys are treated differently by their math teachers and to

construct indices of gender specific treatment - for each teacher.

Both teacher behaviors and student behaviors were observed.

In general, both groups of behaviors are either self initiated

(spontaneous) or reactive. The relevant spontaneous teacher behaviors

are 1) giving a turn to an individual student, 2) giving help. The

relevant reactive teacher behaviors are 1) giving feedback, 2) giving

help (when requested), 3) (not) answering a question, 4) (not)

permitting a student who raises hand to say something, 5) making a

disciplinary remark. Turn giving was divided in five subcategories,

feedback giving in seven. All teacher behaviors directed towards the

class as a whole are not relevant in this context.

The spontaneous student behaviors are 1) raisinghand, 2) raising

hand after a question of the teacher to the class, 3) answering

directly after such a question, 4) making a statement or question, 5)

asking help, 6) asking feedback. The last three behaviors may or may

not be preceded by raising hand and being permitted. The reactive

student behaviors are 1) answering when having the turn, 2) not

answering when having the turn.

Each class was observed during three lessons. We report the

observation data on the highest level of aggregation, i.e. over

lessons, classes, levels and takes, but separately (of course) for

girls and boys. The figures given represent hundred times the relative

frequency for girls and for boys to receive or to-show a specific

behavior during one lesson - a probability-like measure. Below are

reported the behavior categories in which the gender difference is at

least 3.

The teachers gave more turns to girls than to boys (38 vs. 35) and

continued the same turn more often with girls than with boys (32 vs.

29). Consequently the girls more often answered on a turn (67 vs. 62).

The boys more often answered spontaneously when the teacher asked a

question to the class (19 vs. 15) - which may explain why the girls

got more turns. The boys more often received positive feedback (68 vs.

65).
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The girls more often raised hand spontaneously (31 vs. 27) and more

often were permitted (27 vs. 23); (thereafter) they asked more often

for help (17 vs. 13), which they also did more often spontaneously,

without hand-raising (22 vs. 18). Consequently, the girls more often

received help after request (34 vs. 27). The teachers also gave more

help to the girls unsollicited (19 vs. 16). Finally, the boys more

often made a statement spontaneously (14 vs. 11), and the teacher more

often aimed disciplinary remarks at boys than at girls (23 vs. 20).

In our opinion these differences are not very large. Moreover, at

lower levels of aggregation they are not completely consistent. The

general pattern is that the teachers not actively aggrieve the girls;

the contrary is more plausible. For the rest, the gender differences

in teacher behavior appear to be caused largely by different behaviors

of girls and boys themselves.

Gender differences

4. Dutch achievement marks range from 1 (very low) to 10 (excellent).

The marks at the last two school reports were provided by the

teachers. At the average the boys obtained 0.2 higher marks thali

girls, which is a rather small difference, taking into account the

possible range and the standard deviation. In the separate groups the

difference varies from -0.1 to 0.6.

5. The intended math participation was measured on a five-point-scale

(not; may be not; may be not, may be yes; may be yes, yes). The

actual math participation (dichotomous) could be obtained only from

the students who were at Take 2 in the grade after the choice. At

HL either applied math and/or pure math can be chosen.

In all groups a .higher percentage boys than girls indicated to

choose math certainly. The difference ranges from 20% .until 35%, with

one exception: at HL the difference is much smaller for applied

math. Taking into account the students indicating to choose math

probably, the difference becomes in some cases more, and in some cases

less pronounced.

At LL in the grade after the choice 52% of the girls and 83% of the

boys had chosen math. At ML these percentages are 48% and 76%, at HL

31% and 60% for pure math and 59% and 67% for applied math-.

6. On the basis of factor analysis four attitude scales were

constructed. The first scale (7 items, a=.86) was labeled

'difficulty of math', the second (5 items, a=.86) 'pleasure in
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math', the third (3 items, a=.62) 'math as a male domain', and the
fourth (2 items, a=.69) 'usefulness of math'. The _pattern of the
gender differences on these scales is very consistent over the groups.

Giils significantly perceived math as more difficult and less useful,

and (surprisingly) less as a male domain than boys did. On pleasure
there is tendency that girls have lower means (indicating less
pleasure) than boys. However, in the grade after the choice, i.e.

among the students who had chosen math indeed, the girls' means tended
to be higher than the boys.

7. On the basis of factor-analysis three scales for perceived teacher
behaviors were constructed: accessibility (7 items, a=.86),
gender specific behavior (5 items, a=.70) and relevance transfer
(making clear the relevance of math; 4 items, a=.76). Only small

gender differences occur on these scales. On the first there is no
difference whatsoever, on the second there is a tendency that girls
perceived less gender specific behaviors than boys did, and on the
third girls tended to perceive less relevance transfer than boys.

The influence of the teacher

The results reported above are only pertaining to differences between
girls and boys, i.e. the Gender main effect. The analyses reported in
this section focus on the influence of the teachers, i.e. the Teacher
main effect and - more importantly - the TeacherzGender interaction.

Two-way analyses of variance were performed on the three scales for

perceived teacher behaviors in nine separate groups (the relevant
combinations of Level, Take and Grade).

On accessibility the Teacher main effect was significant (p<.01)
in all nine cases, the Gender main effect was not significant in any
case, and the interaction was significant in two cases. The averaged

percentage of variance accounted for (VAF) by Teacher is 44%, by
Gender 0%, and by the interaction 3%.

On gender specific behavior Teacher was significant again in all
nine cases, Gender was significant in five cases, and the interaction

in one case. The averaged percentages VAF are 26%, 2% and 3%.

On relevance transfer Teacher was significant again in all nine
cases, Gender in one case, and the interaction was not significant in

any case. The averaged percentages VAF are 30%, 0% and 2%.

It can be concluded that there are large differences in the way
individual math teachers are perceived by their students. The
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(non)significance of Gender corresponds with the remarks made at the

end of (7) above. The finding that the interaction is not significant

- with a few exceptions - means that it hardly occurs that specific

teachers are perceived quite differently by girls than by boys.

In order to investigate the influence of the math teachers on gender

differences in achievement, participation and attitudes multi-level

analysis was performed (Altkin & Longford, 1986). In the present case

the analyses of variance reported above are analogous to the first

level, in which student6 are the unit of analysis. At the second

level, in which teachers are the unit of analysis, teacher variables

are related to the teacher parameters resulting from the first level.

The teacher variables used are gender and eight categories of observed

teacher behaviors - for this purpose transformed into indices ranging

from - 1.00 (only aimed at boys) to + 1.00 (only aimed at girls). In

order to obtain a reasonable amount of statistical power for the

second level of analysis LL, ML and HL* were taken together.

In accordance with the primary research question (i.e. the influence

of teachers on gender differences) not the teacher parameters itselves

were analysed, but the parameters of the TeacherxGender interaction.

The dependent variables were math achievement, intended and actual

participation*, the four attitudes towards math, and (for comparison)

the three scales of perceived teacher behavior.

Analyses were performed with VARCL (Longford, 1988). The test

statistic for a certain effect is the difference in deviance between

two fitted models - in the present case the models with and without

the Teacher Gender parameters. The distribution of this difference is

(asymptotically) chi-squared, in the present case with two degrees of

freedom. The critical value (p<.01) is 9.2. The results of the first

level analyses are given in table 1.

Althbugh the difference in deviance is significant in a number of

cases, most differences are small, taking into account the large

numbers of students involved.

In the four cases in which the difference is above 20.0 the second

level of analysis was performed. On pale domain none of the teacher

variables appeared to be related to the interaction parameters in

either case. At further inspection, the
significant result is due to a

* At HL pure math was taken.
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. systematic difference between LL, ML and HL: in both cases the gender

difference is smaller at HL than at LL and ML. Because teachers are

nested within Level this explains the significant result.

Table 1: Test of the Teacher Gender interaction: differences in
deviance

Take 1; grade Take 1; grade Take 2; grade
before choice

math achievement 2.2
intended particip. 9.6*
actual particip. -

difficulty 4.3
pleasure 3.6
male domain 27.4*
usefulness 4.5
accessibility 12.2*
gender spec.beh. 11.5*
relevance transf. 5.9

of choice of choice

2.0 10.9*
4.7 11.7*
0.0 -

0.0 1.2
2.5 13.5*
14.6* 39.8*
9.0 0.3
6.9 22.3*
5.5 27.4*
6.7 2.8

* Significant at 1%

On accessibility the teacher's gender is significantly related to

the interaction parameters. It appears that female math teachers are
perceived to be more accessible by girls in comparison with the three

other gender-gender combinations, which do not differ. This accounts

for 15% of the variance in the interaction parameters.

On render specific behavior again the teacher's gender is

significantly related to the interaction parameters. It appears that

male teachers are perceived to behave more gender specificly by girls,

whereas female teachers are perceived to be more gender specific by

boys. This relation accounts for 8% of the variance.

CONCLUSIONS

The finding that Dutch math teachers have different perceptions and

expectations of girls and boys is replicated. Girls in general are

perceived as more tidy and industrious, boys as more troublesome. Boys

are expected to have more math capacity in reserve.

The observations show some difference in teacher behaviors towards

girls and boys. However, these differences can be attributed largely

to gender differences in student behaviors. Moreover, it is not true

that girls are treated less favorably than boys, in the contrary.
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The gender difference in math achievement is small, but large in

attitudes towards math (especially on difficulty and usefulneda)

and in math participation. There are also large differences in the way

individual math teachers are perceived (especially on

accessibility), but there are only small differences between girls

and boys in this respect, both overall and per teacher (the

interaction).

Finally, and possibly most importantly, the differences in

achievement, attitudes and participation .cannot be attributed to

(characteristics of) individual math teachers. There is some evidence,

however, that the gender of the teacher influences the perception by

girls and boys of their teachers' behaliiors in a way that might be

labeled 'own sea- favoritism'. The observed teacher behaviors do not

influence this perception.

In our opinion the results fit nicely into a general pattern, which

can be verbalized as follows: the gender differences in math are not

the teachers' fault.
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TEACHING STUDENTS TO BE REFLECTIVE: A STUDY OF
TWO GRADE SEVEN CLASSES'

Frank K. Lester. Jr. & Diana Lambdin Kroll
Indiana University Bloomington

This paper reports on a study of the effects of mathematics problem-solving instruction designed to
increase students' cognitive self-awareness and ability to monitor and regulate their cognitive performance. The
instruction, which also included many of the features of previous research on problem-solving instruction, took
place over a period of 14 weeks and involved the teacher in three distinct, but related roles: external monitor,
facilitator of students' metacognitive development, and model of a good problem solver. The paper provides an
overview of pre-instruction to post-instruction changes in students' problem-solving performance and a brief
description of five general observations about the efficacy of problem-solving instruction designed to increase
students' reflectiveness.

Background

For generations, mathematics teachers have voiced concern about the inability of their

students to solve any but the most routine verbal problems, despite the fact that they seem to

have mastered all the requisite computational skills and algorithmic procedures. Until recently,

researchers have been content to attribute problem-solving difficulties almost exclusively to

cognitive aspects of performance. However, there has been growing sentiment for the notion

that a much broader conception is needed of what mathematical problem solving involves and

what factors influence performance.

The rather elusive construct referred to as metacognition is among the factors that are

currently considered to be closely linked to problem solving. Briefly, metacognition refers to

the knowledge and control individuals have of their own cognitive functioning: that is, what

they know about their own cognitive performance and how they regulate their own cognitive

actions during the performance of some task. Metacognitive knowledge about mathematical

performance includes knowing about one's strengths, weaknesses, and processes, together

with an awareness of one's repertoire of tactics and strategies and how these can enhance

performance. Knowledge or beliefs about mathematics that can affect performance are also

considered metacognitive in nature. The control and regulation aspect of metacognition has to

do with the decisions individuals make concerning when, why, and how they should explore a

problem, plan a course of action, monitor their own actions, and evaluate their own progress,

plans, actions, and results. This self-regulation is influenced by the individual's metacognitive

I The research reported in this paper was supported by a grant from the National Science Foundation of the

United States (grant # MDR 85-50346). All opinions and conclusions presented are the sole responsibility of

the authors and do not necessarily indicate the views of the National Science Foundation.
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knowledge (see Garofalo & Lester [1985] and Schoenfeld [1987] for more extensive

discussions of metacognition and its relationship to mathematical behavior).

The research discussed in this paper is a continuation of our earlier work involving the

role of metacognition in young children's mathematical problem solving and is an extension of

the research reported at the PME XI meeting in Montreal (Garofalo, Kroll & Lester, 1987). Our

most recent research project has had two main goals: (1) to investigate the influence of

metacognition on the cognitive processes students use during mathematical problem solving,

and (2) to study the effectiveness of instruction designed to increase students' cognitive self-

awareness and ability to monitor and evaluate their own cognitive performance. A detailed

discussion of the goals of this project is given in the final report of the project (Lester,

Garofalo, & Kroll, 1989). In this paper we consider only the second of these goals: in

particular, the question of how students can be taught to be more reflective about their problem-

solving behaviors.
The Research Plan

In recent years there has been much research conducted on various approaches to

mathematical problem-solving instruction. Detailed reviews of this research can be found in

Kilpatrick (1985) and Lester (1985), and extended discussions of problem-solving instruction

can be found in Charles and Silver (1989) and Schoenfeld (1985). One observation is common

to all these reviews and discussions: namely, that none of the approaches has been shown to be

substantially superior to the others. Furthermore, in reviewing the literature we found no

evidence of systematic attempts to design instruction in mathematical problem solving that

would emphasize the development of metacognitive skills in the context of learning regular

mathematics content and that would expose students to a wide variety of problem types overa

prolonged period of time. Consequently, we decided to conduct an exploratory study to

investigate both the relative effectiveness of various teacher roles in promoting metacognitive

behavior in students and the potential value of instruction involving a wide range of types of

problem-solving activities.

Description of the Instructional Component of the Study

The instructional approach we used came about as a result of experience gained during

several previous studies. In the mid-1970s, the Mathematical Problem Solving Project (MPSP)
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at Indiana University (Stengel, LeBlanc, Jacobson, & Lester, 1977) created a problem-solving

teaching approach which was later refined by Charles and Lester (1982). The approach was

characterized by the inclusion of: (1) practice in the use of strategies (strategy training), (2)

instruction concerning the value and significance of strategies (awareness training), and (3)

instruction concerning the monitoring and control of strategies (self-regulation training).

Perhaps the most important features of the teaching approach are that it identifies rather

specifically a set of ten "teaching actions" to guide the teacher during classroom problem

solving lessons (see Charles & Lester, 1984, for a description of the teaching actions) and that

it includes attention to monitoring and control strategies. In a study designed to investigate the

potential effectiveness of the teaching approach, Charles and Lester (1984) found significant

growth in students' problem-solving abilities with respect to comprehension, planning and

execution strategies. From these findings, we became convinced that training in the use of a

collection of skills and heuristics is much more effective when accompanied by attention to

affective and metacognitive aspects of problem solving. In the current study, we decided to add

an even more explicit focus on metacognition by having the teacher model strategic behavior

and vocalize metacognitive thinking and decision making as he attempted to solve problems in

front of the class. The notion of having the teacher serve as a model of a metacognitively-aware

problem solver stemmed from Schoenfeld's (1983) recommendation that teachers should

attempt to model good problem solving for their students.

The instruction was presented by Frank Lester to one regular-level and one advanced-

level class of seventh grade students about three days per week for a period of 14 weeks (each

class met for a period of 45-minutes per day). (Diana Kroll served as research associate and

classroom observer.) In addition to instruction in problem-solving strategies, the instruction

included three teacher roles focused on developing students' reflectiveness: the teacher as an

external monitor, the teacher as facilitator of students' metacognitive awareness, and the teacher

as model of a metacognitively-aware problem solver.

The role of teacher as an external monitor involved the teacher in: directing whole-class

discussion about problems that were to be solved; observing, questioning and guiding students

as they worked either individually or in small groups to solve each problem; and, leading a

whole-class discussion about students' solution efforts.

BEST COPY AVAILABLE
153

231-



The teacher as facilitator role involved the teacher in: asking questions and devising

assignments that required students to analyze their mathematical performance; pointing out

aspects of mathematics and mathematical activity that have bearing on performance; and helping

students build a repertoire of heuristics and control strategies, along with knowledge of their

usefulness. One way in which we attempted to direct students to reflect on their own cognition

was to have them complete self-inventory sheets on which they listed their own strengths and

weaknesses in doing mathematics. Another activity was to ask students to write short

statements about their thinking during their solution attempts immediately after solving a

problem.

The third role, teacher as model, required the teacher to demonstrate regulatory decisions

and actions explicitly while solving problems for students in the classroom. The intent was to

give students the opportunity to observe the monitoring strategies used by an "expert". as he

solved a problem that he had never solved before. In addition, the teacher directed a discussion

with the class about their observations of his behavior.

Data Collection

Written Pre- and Post-tests. Prior to the beginning of the instruction, written

problem-solving tests were administered to all students in the two classes. A posttest, parallel

to the pretest in terms of problem structure and difficulty, was administered to all students

within a week after the end of the instruction. The problems on both tests were chosen to

include some routine problems like those commonly encountered in school, as well as some

nor-routine, "process," problems like those considered during the instruction. The intent was

to include some problems which students could not solve simply by means of the direct

application of one or more arithmetic operations, problems that would require students to

engage in strategic decisions and regulatory behaviors. The tests included a one-step, a two-

step, and three process problems. Each problem was scored with respect to the degree of

understanding and planfulness apparent, as well as with regard to the correctness of the

answer.

Pre- and Post-instruction Interviews. Pre-instruction and post-instruction

interviews were conducted with a subset of the students from each of the two classes. In these

interviews the students were videotaped as they solved several problems (either individually or
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in pairs), and were questioned about their work and their thinking. No findings from the

interviews are reported here because this paper focuses on the instruction, rather than the

interview, phase of the project. However, observations resulting from these interviews are

summarized in the project's final report.

Observations of Instruction. Instructional sessions were video- and audio-taped for

both classes. Also, in order to pick up conversations between individual students or small

groups of students and the instructor, the instructor wore a lavaliere microphone attached to an

audio-cassette tape recorder which was worn on his belt. The tapes were a primary source of

data on the effectiveness of the instruction.

A standard practice followed on almost all occasions was for the observer (who also

operated the video camera) to debrief the instructor shortly after a session ended. That is, the

observer and instructor discussed how the session had gone, what had gone well (or not so

well), and what might be done as a follow-up activity on subsequent days. On occasion the

observer called the instructor's attention to something that he may not have noticed (e.g., a

group of students who had not been attentive) or suggested an idea for modifying an activity.

In addition to the observer, the regular teacher sat in on about half of every class session. She

never made comments or intervened during a lesson, but she did make several valuable

suggestions to the instructor afterwards.

Results

Results of two types of analysis are presented in this section: (1) pre-instruction to post-

instruction changes in students' problem-solving performance, and (2) observations of

instruction.

Pre-Instruction to Post-Instruction Changes in Students' Performance

Both the regular class and the advanced class showed an overall mean gain in total score

from pretest to posttest and the amount of gain was about the same for the two classes. Of 10

possible points on each test, the regular class mean went from 4.7 to 6.0 and the advanced class

mean went from 6.7 to 8.4. However, these gains were not statistically significant. One

interesting result is that the pretest mean of the advanced class exceeded the posttest mean of the

regular class. Further, four students in the advanced class scored a perfect 10 on the pretest

(only two scored 10 on the posttest), whereas no student in the regular class scored 10 on either
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the pre- or the posttest. The presence in the advanced class of several perfect scores, and the

fact that only two students in this class scored lower than 8 on the posttest may indicate a

ceiling effect on these tests for the advanced class. In other words, the advanced class students

may have learned more about problem solving than their scores indicate. On the other hand, the

tests did not seem to be too easy for the regular class. Assuming that the tests did measure

problem-solving ability, it appears that the instruction was moderately successful. Also, a

closer look at the students' written test results, together with an analysis of their class work and

homework performance, suggests that the instruction was most effective with average ability

students.

Both the pretest and the posttest also contained a series of four multiple choice self-

inventory items accompanying each of the problems to be solved. These items provided

information about certain aspects of the students' metacognitive awareness. Specifically, the

items involved students' assessment of problem difficulty, confidence in the correctness of their

solutions, familiarity with the types of problems, and interest in solving problem like the ones

under consideration. No significant changes were detected from before to after instruction in

any of the four areas, nor was any significant correlation found between students' problem-

solving scores and any of the self-inventory areas.

Observations of Instruction

Since the instruction was exploratory in nature, we decided to attempt to describe it as

completely as possible. Our approach was to prepare written accounts of the instruction from

the point-of-view of three persons: the problem-solving instructor (FKL), the observer (DLK),

and the regular mathematics teacher. These accounts are recorded in the final report of the

project (Lester, Garofalo & Kroll, 1989). There was general agreement about the instruction

on five points, each of which is stated below.

Observation 1: Control processes and awareness of cognitive processes develop

concurrently with the development of an understanding of mathematics concepts. Thus,

attempts to make students more reflective about their problem-solving should take place in the

context of regular mathematics instruction. In this study, it was important for the instructor to

be willing and able to deal with questions about mathematics content (e.g., how to find

percentages) and about problem-solving skills (e.g., how to organize a table) at the same time
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that he was facilitating instruction designed to increase students' reflectiveness.

Observation 2: Problem-solving instruction, metacognition instruction in particular, is

likely to be most effective when it is provided in a systematically organized manner, on a

regular basis, and over a prolonged period of time. Furthermore, the teacher must play a

prominent role not only in organizing instruction, but also in directing class discussions and

aiding students in learning how to be reflective about their thinking (But, see Observation 4).

Observation 3: In order for students to view being reflective as important, it is necessary

to use evaluation techniques that reward such behavior. That is, great care should be taken to

insure that what is evaluated is consistent with what is intended to be learned.

Observation 4: The specific relationship between teacher roles and student growth as

problem solvers remains an open question. In particular, the roles of teacher as facilitator and

teacher as model need much more attention, and student expectations about the role of the

teacher must be considered. For example, attempts to have the teacher model monitoring

behaviors while solving an unfamiliar problem in front of the class were less successful than

expected. The teacher found it difficult to maintain his role as problem solver (lapsing

frequently into a teacher-like explaining role rather than a problem-solver-like modeling role).

And the students indicated uneasiness because they expect a teacher to demonstrate the right

way to solve a problem, not to stand in front of the class looking confused about a problem and

making false moves.

Observation 5: Willingness to be reflective about one's problem solving is closely linked

to one's attitudes and beliefs. We observed that students' attitudes and beliefs about self,

mathematics, and problem solving frequently played a dominant role in their problem-solving

behavior. It was often just as important to ensure that the students were motivated, engaged,

and confident about trying to solve a problem as to ensure that they possessed sufficient

mathematics knowledge or adequate monitoring skills.

Discussion

The relationship between problem solving and metacognition have been of interest to us

for several years. Despite this long-term involvement we believe that we have only just begun

to scratch the surface of what there is to know. At present, what we know about the role of

metacognition and other noncognitive factors in mathematical problem solving is based more on
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our own experiences as teachers and learners of mathematics than on the results of carefully and

systematically conducted research. Additional insights into the effectiveness of the instruction

might be gained from further analyses of the data that have already been gathered.

Moreover, in a future study we intend to undertake much more thorough scrutiny of various

facets of problem-solving instruction.
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STUDENTS' AFFECTIVE RESPONSES TO NON-ROUTINE

MATHEMATICAL PROBLEMS: AN EMPIRICAL STUDY

Douglas B. McLeod Cathleen Craviotto, and Michele Ortega

Washington State University, USA

Solving non-routine problems inevitably involves

overcoming blockages and interruptions. Mandler's theory of

emotion suggests that such blockages will result in

relatively intense emotional responses. Protocols from

seven university students provide support for Mandler's

theory. Students reported both positive and negative

emotional states while solving problems; reports of

frustration were the most common response.

Research on mathematical problem solving has concentrated mainly on

the cognitive processes of problem solvers. More recently researchers

have turned their attention to the role of affect in student performance on

non-routine mathematical problems. The purpose of this study was to

investigate how affective factors can help or hinder the performance of

young adults on problem-solving tasks.

The role of affect in problem solving has been identified as an

underrepresented theme in research on this topic (Silver, 1985). Although

affective factors have received more attention recently, (e.g., McLeod &

Adams, 1989), we still have very little data on the affective states of

students (especially more intense affective responses) as they solve

non-routine problems. The data gathered for this study focus particularly

on the emotional reactions of problem solvers.
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Conceptual Framework

Research on the affective domain has usually concentrated on attitudes

and beliefs, the less intense kinds of affect that can be assessed through

the use of questionnaires (Reyes, 1984). Problem solvers, however, often

exhibit more intense emotions. They report feelings of frustration (or

elation) as they struggle with (or triumph over) mathematical problems

(Mason, Burton, & Stacey, 1982). Experts as well as novices report rather

intense emotional responses to mathematical problems (McLeod, Metzger,

& Craviotto, 1989).

Mandler (1984) has developed a general theory of emotion that provides

a strong conceptual framework for research on affect in this context. For

a description of how the theory can be applied to the teaching and learning

of mathematical problem solving, see Mandler (1989) and McLeod (1988).

A brief summary of the theory will be presented here.

Mandler's view is that most affective factors arise out of the

emotional responses to the interruption of plans or planned behavior. In

Mandler's terms, plans arise from the activation of a schema. The schema

produces an action sequence, and if the anticipated sequence of actions

cannot be completed, the blockage or discrepancy is followed by a

physiological response. This physiological arousal may be experienced as

an increase in heartbeat or in muscle tension. The arousal serves as the

mechanism for redirecting the individual's attention, and has obvious

survival value which presumably may have had some role to play in its

evolutionary development. At the same time the arousal occurs, the

individual attempts to evaluate the meaning of this unexpected or

otherwise troublesome blockage. The interpretation of the interruption

might classify it as a pleasant surprise, an unpleasant irritation, or

perhaps a major catastrophe. The cognitive evaluation of the interruption
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provides the meaning to the arousal.

In mathematics education, problems are usually defined as those tasks

where some sort of blockage or interruption occurs. The student either

does not have a routine way of solving the problem, or the routine

solutions that the student attempts all fail. As a result, the kind of

problem solving that is attempted by mathematics students results in just

the kind of interruption that Mandler has analyzed in his theory. In this

study students' performance was analyzed to see how they reacted to

interruptions and blockages while solving mathematical problems.

Design and Procedures

Seven subjects (four females and three males) were chosen from among

volunteers who were enrolled in two mathematics courses for non-majors

at a large state university. One course was intended for business majors

(four subjects); the other was a content course for prospective

elementary school. teachers (three subjects).

Each student was asked to think aloud while solving problems during a

one-hour interview. Interviews were videotaped. The students worked on

an assigned non-routine problem until they obtained a solution or decided

to quit. After the students finished a problem, they were asked to

describe their feelings during the problem-solving episode. The

interviewer followed up their responses with specific questions about

important points during the problem-solving process, particularly points

at which they had run into difficulty or experienced some success. The

interviewer also asked about particularly positive or negative feelings

that the students had experienced. At the end of the interview, each

student was asked to draw a graph that showed his/her emotions during

the problem-solving episode.

Five different non-routine problems were used. Although the problems
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are well known, the students were generally not familiar with them.. In

one problem ("the handshake problem") students were asked to find the

number of handshakes if there are eight people at a party and they all

shake hands. .Another problem ("chickens and pigs") involved finding the

number of chickens and pigs in a barnyard if the farmer says that there are

60 eyes and 86 feet. A third problem ("seven gates") asked how many

apples a man gathered in an orchard if he had to give a guard at the first

gate half of the apples plus one more, and then had to give half of the

remaining apples plus one more to a guard at each of the next six gates,

finally leaving the orchard with just one apple.

Five students worked on three or four problems; one student tried two,

and the remaining student attempted all five. Three students solved two

problems, and three students were not able to solve any problems. The

remaining student solved one problem, yielding seven correct solutions out

of 25 problems.

Results

The analysis of the data followed the factors listed in McLeod (1988).

Students were generally able to describe their emotions in reasonable

detail. They reported mainly frustration and happiness as their emotional

responses to problem solving, along with occasional references to other

emotions like panic and satisfaction. The students drew graphs that

indicated rather wide swings between positive and negative emotions, and

suggested that the negative emotions were particularly intense. In the

chickens and pigs problem, for example, a student drew a graph that went

up when she realized that there were 30 animals altogether. The graph

turned down, however, when she divided 86 by 30; she later said that she

was just "playing with the numbers." She went on to try to solve the

problem through trial and error, and made good progress. She would have
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been successful except for a computational error that resulted in feelings

of frustration and the comment "I hate word problems." Her graph showed

the rise and fall of her hopes and emotions. Her frustration with the

computational error was quite intense; it seemed that her feelings of

frustration used so much of her working memory capacity that she was

unable to find her error in computation.

Figure 1 shows graphs drawn by the four students who attempted the

"seven gates" problem. The first student reported feeling confused at the

beginning of his attempt to solve the problem, saying that he "didn't even

know where to start." Later he developed a suitable plan to find a solution

by working backwards. Even though an error resulted in an incorrect

answer at first, he was able to correct the mistake and solve the problem

in about five minutes, generating the positive feelings shown at the end of

his graph. The second student worked on the problem for about eight

minutes, using mainly trial-and-error methods, before quitting and

reporting feelings of frustration. The third student started out using

algebraic methods to solve the problem. The computations got

complicated very quickly, but the student felt that shd was making

progress toward a solution, which resulted in some positive feelings.

Unfortunately, the resulting solution was a negative number of apples, and

her emotional response changed from moving in a positive (upward)

direction to negative. She stopped working after about 15 minutes. In her

words, "I wasn't going to get it; I was frustrated." The fourth student

spent about 11 minutes working on the problem. This student used

algebraic methods and reported that feelings of frustration were quite

consistent, although there were two more positive interludes when some

progress was being made on the problem.

Asking students to graph their emotional reactions to a problem
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Student 1.

working
backwards

confusion

found
error

problem solved

Student 2.

trial and error method

no solution found

Student 3.

found a

used solution
algebra

solution was
negative

gave up hope

Student 4.

wrote
1 /2 a + 1

trial and
error

got an answer, but
it was incorrect

tried using
algebra

quit

Figure 1. Student graphs of their effective responses to the
"seven gates" problem.
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appeared to be a useful technique. It gave students a way to describe

variations in their affective responses at different stages of the

problem-solving process, allowing them to show changes from positive to

negative, as well as the differing levels of intensity of their emotional

responses.

Conclusions

Students exhibit substantial swings in their. emotional responses to

problem solving. These swings occur quite regularly even among students

who report that they have a negative attitude toward mathematical

problems. The emotions that occur during problem solving appear to be

relatively independent of traditional attitude constructs.

The appearance of these emotional swings corresponds in general to the

interruptions and discrepancies that occur as a natural part of solving

non-routine mathematical problems. Thus the data provide support for

Mandler's (1984) theory of emotion and its application to research on

mathematical problem solving.

In an earlier study (McLeod, Metzger, & Craviotto, 1989), experts and

novices exhibited similar kinds of emotional reactions to problem-solving

tasks. Experts, however, were better able to control their emotional

reactions than novices. Students need help so that they remember the

satisfactions, not just the frustrations, of problem solving. They also

need to remember that feelings of frustration are a natural part of solving

non-routine problems. A repertoire of heuristics can help students control

their emotional responses. Further research along these lines should

provide more information on how to help students use their

problem-solving resources more effectively.
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ACCOMMODATING CURRICULUM CHANGE IN MATHEMATICS:

TEACHERS' DILEMMAS

Rita Nolder

Department of Education, Loughborough University, U.K.

ABSTRACT

It is generally acknowledged that the social context
within which teachers work imposes limitations upon
what is possible both in terms of classroom practice
and curriculum innovation. This paper examines
factors which mathematics teachers in two sch000ls
perceived as significant in influencing decisions
they made relating to innovative practice. It
describes dilemmas they had to resolve and points to
the consequences for teachers in terms of feelings of
competence and confidence associated with these
dilemmas.

INTRODUCTION

Surveys of classroom practice suggest that in spite of

recommendations for the inclusion of more practical work,

investigations and applications in the mathematics curriculum

at all levels of schooling, the pattern of teacher exposition-

and pupil practice has continued to dominate. The social

context within which teachers work has been identified (see for

example Popkewitz, 1988) as exerting a powerful influence over

the process of schooling in general, and hence over the way in

which curriculum reform is implemented. However, relatively

little exists by way of research, particularly with regard to

mathematics teaching, which details the major constraints

which teachers perceive to be limiting their practice and the

manner in which these constraints might restrict innovation.

Research carried out by Desforges and Cockburn (1987) suggests

that the mismatch they found between teachers' aspirations,

which echoed those of 'experts' in mathematics education, and

their everyday practice, resulted from 'the constraining
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factors of the classroom' (p.155) of which current approaches

to enhancing mathematics teaching do not take account. Other

research, for example that of Cobb, Yackel and Wood (1988) and

the Low Attainers in Mathematics Project, LAMP, (DES, 1987),

offers examples of teachers who were able to change their

classroom practice despite the constraints within which they

were operating. Neither of these studies set out to examine in

detail the consequences for teachers of implementing change

within the context of these constraints. Such an examination

formed a part of my research and some preliminary findings are

reported in this paper.

THE RESEARCH

The aim of the research has been to examine the ways in which

mathematics teachers in two secondary schools have responded to

the changes in classroom practice demanded of them in the

course of curriculum change. The fieldwork for this study was

carried out in the period September 1985 to July 1988, a time

of substantial changes in school mathematics curricula.

Recommendations regarding the teaching of mathematics contained

in the Cockcroft Report (DES, 1982) had filtered through to

some schools, a new public examination at age sixteen plus

was being introduced and proposals for a National Curriculum in

mathematics were emerging.

The two departments in my study were participating in a local

curriculum development initiative (Solder & Tytherleigh; 1990)

which sought to support schools in devising curriculum

innovations in mathematics for the intake year which were

appropriate to their own individual circumstances. In

particular schools involved in the project were aiming to

adopt an investigative approach to the teaching and learning of
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mathematics.

At this time I worked as a mathematics curriculum support

teacher in schools involved with the project, including the two

departments which participated in my study. As such, I have had

the dual role of support teacher/researcher.

RESEARCH STRATEGY

This study falls into the category of 'interpretivist research'

(Eisenhart, 1988, p.103). It seeks to understand teacher

behaviour by observing teachers in their natural settings and

by eliciting from them the meanings they attach to actions

and events. It begins from the standpoint that this is best

achieved by using qualitative research methods. Participant

observation has been my research strategy and a variety of

data has been collected and analysed including field notes,

documentation and audiotapes and transcripts of interviews.

From this analysis a network which represents a set of

interrelated concepts associated with professional change and

the dynamic relationships between these concepts has been

developed. This will be described in a later paper. Within this

paper I focus on one aspect of the network, that which relates

to factors teachers perceived as constraining their practice.

THE TEACHERS

Lack of space limits the detail in which teachers in the study

may be described. They varied in age from mid-twenties to late

forties, were experienced teachers, and were regarded as

competent practitioners whose students obtained good results in

public examinations. The style of teaching in the two schools

prior to involvement in the curriculum innovation may be

described as 'formal' (Herscovics & Bergeron, 1984). Teachers

viewed teaching largely in terms of 'getting things across' and
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their teaching focused on the effective transmission of

knowledge via clear explanations. Progress was measured by

'coverage' of the mathematics syllabus. Teachers' major sources

of feedback on their performance were results from public

examinations, school tests and examinations, and students'

responses to their lessons. The issue of motivation for change

is a complex one and beyond the scope of this paper, but all

the teachers in this study were motivated to some extent to

change their practice by the imminent changes to public

examinations, in particular the inclusion of teacher-assessed

practical and investigative work.

CONSTRAINTS

Teachers in the research were subject to all the 'normal'

constraints of a mathematics classroom and the everyday

exigencies of teaching (see Jaworski, 1989). The focus here is

upon constraints which were of particular significance as

teachers set about implementing what they described as

'radical' curriculum change.

The main constraints teachers referred to were time, parental

expectations and public examinations, and these interacted to

exert substantial pressure on teachers. The latter two

constraints, which were also identified within the LAMP study,

reflect teachers' concerns with respect to accountability. A

further constraint upon innovation was the influence of

teachers' residual ideologies (Kirk, 1988) of traditional

mathematics teaching with regard to the teaching/learning

process and to criteria for successful teaching. All these

constraints were associated with a set of dilemmas, discussed

below, which teachers had to try resolve in order to

accommodate the curriculum innovations.
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ACCOUNTABILITY

At a time of declining numbers in the secondary school

population, schools were competing for students and were

increasingly aware that they were being judged by parents and

other 'outsiders' on the basis of the curricula they offered

and the public examination results their students obtained.

Teachers exhibited anticipatory anxiety in relation to

innovative practice on two counts. Firstly, it was felt that

parents' views of what constitutes 'proper maths' might be at

odds with new approaches.

Many parents still expected their sons to have a

'sound' mathematics education and I'm sure the idea
of playing with bits of coloured paper and sellotape
instead of doing 'proper' maths like they had to,
would have horrified some of our parents.

(Rik, essay, 22/10/86)

Secondly, there was a possibility that examination results

might deteriorate as a consequence of experimentation with

'untried' methods.

I think the lack of confidence is knowing the effect
it will have elsewhere. So, for example, if I change
my style and do it this way, supposing my results are
not so good, what will be thought of me?

(Nan, interview, 13/7/88)

Teachers had to decide whether to keep to tried and tested

teaching methods of which parents approved or whether to

experiment with unproven methods which were vulnerable to

parental complaints. In either case there was the risk that

examination results could deteriorate, either because old

techniques were inadequate in the new assessment context or

because teachers were less skilled with newer techniques.

TIME

Time was a constraint on teachers' practice in the sense that

it was limited, in terms of the length of the school day, the
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amount of contact time with students, and the amounts of their

own time teachers could devote to preparation and assessment.

Teachers perceived the new teaching approaches as demanding

more time in the classroom as well as for preparation and

assessment. This created time 'balancing' dilemmas for

teachers. Teachers had to to make decisions as to how to share

their preparation and assessment time among classes and how to

allocate lesson time between 'transmission' and 'discovery' in

order to 'get through the syllabus'.

Lee said that it had taken a month to complete the
unit and 'inside I was screaming "I'm never going to
get :this done!"' She felt there was a dichotomy
between wanting to work in the new way and 'Are we
going to get through the syllabus?'

(Field notes, 23/10/86)

Some more comments made by Von about the time and
effort being expended on the Second Years at the
expense of A Level.

(Field notes, 9/10/86)

... we set out by reducing our Second Year syllabus a
lot at the end of the year. We wrote out a beautiful
new syllabus and when you actually come to read
through it, there are huge chunks which we haven't
done. We spend more time on investigation.

(Nel, curriculum review meeting, 2/6/87)

RESIDUAL IDEOLOGIES

An underlying assumption of the curriculum development project

with which teachers were involved was that the processes of

changing established practice and modifying beliefs associated

with that practice go hand in hand). Consequently teachers

experienced some tension due the initial mismatch between their

residual ideologies and the ideas about learning underpinning

the curriculum innovations.

... this is a completely different way (of teaching)
and half the time you're not opening your mouth and
doing any teaching, you're just asking questions.
It's hard for us to accept that they are going to
learn maths from thin air almost and that we're not
going to, you know, that because we haven't put the

172

250



pearls in, they won't learn anything, because we
didn't, as I say, put the pearls in.

(Lee, interview, 12/11/87)

Related to this issue was teachers' traditional practice of

assessing progress by the mathematical content they had

'covered' and the results of class tests, techniques which were

frustrated by the process-focused approach of the new curricula

and the potential within it for students to have differing

mathematical experiences.

... everyone enjoyed in a sense what they were doing
though they found it very difficult to measure
achievement in terms of the pupils, how much they
were really taking in and how much it was staying
there because so much of it was finding out rather
than being given to. So there was less formal
assessment being possible so you felt that you were
assessing very much more by feel than by actually
looking at marks ...

(Koo, interview, 11/7/88)

The problems teachers experienced in relation to residual

ideologies exacerbated the 'transmission' versus 'discovery'

dilemma referred to earlier.

DISCUSSION

The innovations carried out in the two schools involved in this

study were regarded as 'successful' by the local Adviser for

Mathematics in that they resulted in what he regarded as

substantial curriculum change. Such an evaluation, however,

fails to take into account the consequences for teachers of

their involvement in curriculum change.

In this paper some dilemmas teachers experienced when making

decisions relating to innovative practice have been described.

A good deal of uncertainty was associated with these dilemmas

which in turn affected teachers' perceptions of their own

competence and confidence. The data are peppered with such

words as 'worry', 'anxious', 'risk', 'doubt', 'apprehension',
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'pressure', 'nervous', 'depressed', 'discomfort', reflecting

teachers' feelings at this time. Teachers conceptualised change

as 'a struggle', as 'more work',- and as 'a compromise'.

Preliminary analysis suggests that the motivation for change,

which for many teachers was assessment-led, played an important

part in sustaining change in the face of difficulties teachers

experienced, as did the support teachers received from

colleagues within the project and members of the advisory

service. The issues of confidence, competence, motivation to

change and support for change are considered in detail within

my research and will form the basis of future papers.
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Teachers' characteristics and attitudes as
mediating variables in computer-based

mathematics learning
Richard NOSS, Celia HOYLES and Rosamund SUTHERLAND

Department of Mathematics, Statistics and Computing
Institute of Education, University of London

A 30-day INSET course on using the computer in the Mathematics
classroom took place during 1986/87 (Course 1) and 1987/88
(Course 2). Our research aims were twofold: i. to map the views
and attitudes which the participants held initially about
mathematics, mathematics teaching and computers; and ii. to
describe and analyse the reciprocal interactions between
participants' views and attitudes, their activities on the course and
what they said about their practice. The data was analysed on a
three distinct levels: in this paper, some overall conclusions of the
cross-sectional analysis are presented.

Outline theoretical framework
In the last ten or so years, considerable attention has been paid to the
processes of children's mathematical learning in computational environments,
and the extent to which such learning may take place independently of explicit
teaching. We have tried to broaden the idea of computational environments, or
microworlds, beyond the merely technical, and to suggest that the teacher has a
fundamental role to play in such settings (see Hoy les and Noss 1987). As a
recognition of this, we have turned our attention to teachers, and it is the results
of this research which we outline below.

The context of the research was the development, implementation and
evaluation of a programme of in-service teacher education concerned with the
use of generic computer applications (Logo, spreadsheets, databases) within
the secondary school mathematics curriculum'. Course 1 took place during
.1986/87 and course 2 during 1987/88. The number of teachers was 13 in the
first year, and 7 in the second: the majority were in positions of some
responsibility within their mathematics departments. The course was substantial
in terms of contact time: 30 days spread throughout the year in fortnightly
sessions and three 3-day-blocks. The rationale for course implementation was
based upon the need to:

develop a reciprocal relationship between teachers' personal and
professional skills;

1 These we refer to as the 'Microworlds Courses', part of the Microworlds Project (1986-89)
funded by the Economic and Social Research Council.
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encourage participants to view their own learning critically, and to reflect
on it as a paradigm for thinking about pupils' learning;

emphasise the importance of focussing the computer, the software and
pedagogical issues as interrelated elements.

Our research aim was to map out some of the ways in which the teacher-
participants on the microworlds courses thought and felt about employing the
computer in their mathematics teaching, how their interactions with the
computer influenced (and were influenced by) their pedagogical approach, and
how they integrated the computer into their classroom practice.

Our conceptualisation of the classroom is as a setting where teachers
and students mutually produce mathematical meanings from their practices:
and thus we reject the idea that the teachers' role is merely to transmit
mathematical knowledge. In considering the introduction of the computer, we
reject a view which sees it as a technical fix, a technological solution to a well-
defined problem. This kind of technological determinism ignores, among other
things, that the computer has the potential to overturn many of the assumptions

about what children can and cannot do, the 'hierarchies' of understanding that
have been painstakingly drawn up, and the 'readiness' of pupils to understand
this or that mathematical concept.' Second, and more fundamentally, if we
regard the computer as merely a high-technology means of delivering pre-
specified curricular objectives, we guarantee our inability to investigate the
extent to which the computer's presence actually perturbs teachers' thinking,
curricular attitudes and classroom practice. In effect, we rule out the possibility
that the computer can bring anything fundamentally new to the pedagogical
situation: yet this is precisely the object of our enquiry.

Thus our starting point is to reject the view that the computer is 'an
innovation' which can be grafted onto practice. As we pointed out above,
centring attention on the innovation itself deflects consideration away from the
complex issues involved in integrating new ideas into the thinking and practice
of those responsible for its 'implementation'. As far as computers are
concerned, we want to reassert the importance of viewing the computer, the
specific software, the accompanying pedagogy (which is not uniquely
determined by the software, or by the intentions of its designers), and the
classroom setting as forming an organic whole perhaps an innovation in a
broad sense, but not in the reified sense of something which can be 'applied'
piecemeal to a teaching situation. This has an important corollary for our

1 We cannot discuss this literature in detail here: see for example Hoyles and Sutherland (1989),
Hoyles and Noss (in press).
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research methodology: a method of investigating teachers' roles which starts
from pre-specified cognitive objectives for their students, treats as
unproblematic the ways in which the computer's presence may influence, not
just the means by which learning takes place, but the very nature of what is
taught.

Teachers have beliefs and attitudes which underpin their ways of reading

and acting upon innovations. If such beliefs and attitudes are viewed as an
'obstacle' to the transmission of 'good practice', one strategy might be to make
the implementation of the innovation so routine, so 'teacher proof' that such
beliefs might be sidestepped or at least suppressed. We recently attended a
seminar which reported on an innovation which is based on teachers reading
scripts 'like an actor': beliefs about mathematics, about mathematics teaching,
about computers as a cultural innovation, will always crucially determine what
teachers say and do, whatever script is presented.

Some methodological considerations
Essentially, our priorities for the research were as follows:

1. to map the views and attitudes which the teachers held initially about
mathematics, mathematics teaching, and computers;

2. to describe and analyse the reciprocal interactions between teachers'
views and attitudes, their activities on the course and what they said about their
practice. (We did visit all the teachers in their classrooms, and followed three in

some detail. Nevertheless, the constraints of the study did not allow us to
investigate classroom practice as a central element of the research).

Thus our concerns went far beyond looking for 'treatment' effects of the
course (this would be doomed in any case since the notion of a 'control group'
simply does not make sense within our framework). Of course, we were
interested to see which aspects of which beliefs and attitudes were changing,
and to see if we could at least hypothesise as to the reasons behind them. But
we were at least as interested in what the teachers actually did on the course;
and we were particularly concerned to see how teachers existing views and
attitudes influenced these activities.

Data was collected from the following sources:
Interviews at the beginning, mid-term and end of the courses
Examination of project work by teachers

Examination of participants' case-studies of pupils

Data collected from observation notes of participants' activities on the
course
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Classroom observations and follow-up data

Post-course questionnaires distributed to the teachers
In what follows, we are able to present only the most general of our

conclusions. However, we believe that it is helpful to outline the ways in which
the data was analysed and presented, even though the interested reader will
have to go elsewhere to find it (see Hoy les, Noss and Sutherland 1990).The
methodology we developed involved three levels: caricatures, case studies and
cross sectional analysis.

The first level was to develop caricatures of the course participants'. The

caricatures do not represent real people: they are a synthesis of the views,
attitudes and practices of a set of individual course participants which have
been developed to do what caricatures do best to focus attention on the
significant points, perhaps to exaggerate them (at least by a relative de-
emphasis on other facets), and to allow a loss of fine-grained detail in order to
highlight variants and invariants across subsets of the data. We have chosen to
label them as caricatures (rather than, say, as 'ideal types2'), since they were
developed in the course of analysing the data, rather than as a priori theoretical
constructs.

All of the data reported within a'caricature is, of course, completely true to
the original data sources. Nevertheless, by themselves there is a level of
richness which is missing, not least because we did not have sufficient time to
follow all the teachers into their classrooms and observe their practice. There
were, however, three teachers whom we were able to observe in detail in the
classroom, and for these we developed detailed case studies . This second
level allowed us to address a range of issues based on direct observation of
practice as well as 'hearsay', and to consider in depth the ways in which the
three individuals structured their course experiences. The third level of analysis
involved the development of a cross-sectional analysis, which attempted to
transcend individual cases.

Cuts in data such as this are always problematic. But by considering the
data from three distinct perspectives, we can at least be explicit about the
sensitivity of the cuts, and highlight points at which we are unable to fit
individuals into our neat classification. In what follows, we only report from the
perspective of the second level cross-sectional analysis, but we should stress

1 Again the reader is referred to Hoyles, Noss and Sutherland 1990 for details of how these
caricatures were developed.
2 As conceived by Weber, an ideal type is constructed by abstracting from elements which,
although present in reality, are not present in this ideal form. We have resisted using the term
'ideal type' in part because of the connotations of the word 'idea when applied to a group of
people, and worse, when abstracted into one (non-existent) individual.
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that this was developed from both the caricatures and case studies, and thus
represents some attempt at synthesising the findings from a diversity of

perspectives.

Some conclusions of the cross-sectional analysis
Teacher projection. We observed an almost universal tendency for

participants to project their own preferences and attitudes onto their pupils
their own feelings were expressed as insights about their pupils. As examples,
those teachers who displayed initial anxiety in using the computer suggested
that their pupils would be similarly anxious, and proposed pedagogical
implications which flowed from this; teachers who favoured a particular style of
interaction (for example, an approach which was more strongly directed than
that adopted on the course) tended to argue that their pupils would benefit from

a similar approach. Thus there was a dialectical relationship between
teachers' own attitudes and those they attributed to their pupils. We do not
suggest that this process was uniquely attributable to the computer setting: only

that the course highlighted this relationship, by encouraging reflection on
participants' and pupils' learning.

Motivations for approaching computer-based mathematical learning. We
found that participants approached the courses with a range of motivations. A
key classification in terms of understanding their course activities and shifts in
attitude, was that between proactive and reactive views of the computer as an
innovation. In the former category, we identified teachers who held a more or
less articulated position on mathematics and its teaching and who were seeking

mechanisms by which to instantiate their 'programme'. At the other extreme, we

identified a number' of teachers whose practices were being directed towards

change these teachers' were primarily motivated by the need to
accommodate and react to curricular or organisational pressures (such as new

National Assessment procedures).
This classification enables us to be rather more specific about the

mechanisms by which the course may have influenced the participants. For the
proactive participants, a key role of the course was that it legitimated the kinds
of approaches and theories which they held at least on a theoretical level
and allowed them the opportunity to operationalise their ideas. For the reactive
teachers, the course offered a mechanism by which they could implement the
approach which they were being encouraged to adopt.

This proactive/reactive distinction also related to the question of
mathematical content. In general, the proactive teachers tended to view the
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computer as a medium for extending the range of mathematical activities which
they could offer their pupils, while the reactive teachers were concerned to
develop criteria which measured the computational activities against the
yardstick of, for example, texts or curricula and thus were interested in
identifying facets of the work which could be incorporated within their existing
curricular priorities. There was similarly some evidence that proactive and
reactive participants tended to focus towards personal and professional
prioritisation respectively during the course activities. Although these
categories are useful for a first crude classification, we identified a more subtle
underlying issue: the extent to which a participant was able to integrate the
computer into his or her mathematical pedagogy (theoretically and/or
practically) appeared more related to the direction in which a participant's
thinking was already developing and with his or her commitment to change,
rather than the style of teaching approach, view of mathematical activity, or
rationale for attending the course.

The role of mathematics. Although a central focus of the course was to
encourage the integration of computational and mathematical activities, there
were interesting interactions with various characteristics, primarily with the
participants' view of mathematics itself. As an example, for those whose position
was essentially 'ethnomathematical' (i.e. who viewed mathematics as
'everywhere') the computer work posed an opportunity to extend the ambit of
ethnomathematical practice to encompass the computer activities themselves.
For those who took a much more curriculum-focussed view of mathematics
there was a tendency for the computer to be seen as simply a vehicle with
which to introduce curricular content.

Changes in pedagogy and intervention strategies. We classify in two
main ways the extent to which participants reevaluated their pedagogical
approaches. We do not mean to imply that all participants did so, or that those
who did, did so to an equal extent. But one cut across the data which stands out
is that between those who came to reevaluate aspects of their intervention
strategies in essentially quantitative terms, and those who came to see a need
for some qualitatitive reevaluation. In the former category, it appears that this
exclusively involved those who saw the need to intervene less. In general,
these participants tended to be in the reactive category (although the converse
was by no means true). The ethnomathematical teachers in contrast, initially
tended to adopt an abstentionist position with respect to intervention for the
computational activities in ways similar to those they adopted in traditional
mathematical 'investigations'. However, they showed evidence of qualitative
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changes in their pedagogy at least in the computer setting in that they

tended to be prepared to see in computational work the need for novel
intervention strategies. This applied particularly to the proactive teachers. We

note that qualitative shifts of this kind were not related to mathematical
qualifications or experience, or to the relative prioritisation of the personal and

professional.
Resonance. We tried to gain a picture of the extent to which the course

resonated with the thinking of individual teachers, the ways in which the
activities impinged on their views and attitudes. The course failed to resonate
initially with those participants whose own learning (and teaching) styles did not

mesh with those adopted on the course. Some of the participants undoubtedly
assumed that the course would teach them 'how to do it'. However, the views

of all but one teacher in this category changed as the course unfolded, in
relation to the extent to which the individual participants realised the
mathematical power of the computational approach for his/herself rather than

pedagogically i.e. the personal dimension was again critical.

Transition to the classroom
Still at the level of cross-sectional generalisations, we end with a brief overview
of some of the issues determining the extent to which course participants
integrated the ideas of the course into their classroom practice.

Implementation. The first point that emerged was that planned and
careful organisation was a prerequisite for the integration of the. computer into
the classroom. That is not to say that the converse did not operate (i.e. that
those who became committed to such integration found ways to organise their
classrooms), but it was very evident that at least in the computer-
impoverished setting of most of the participants' classrooms routine access to

the machines (on the part of both teachers and pupils) was and remains a
necessary if not sufficient condition for classroom implementation.

It is evident from our follow-up interviews and from the post-course
questionnaires, that almost all the teachers cited technical difficulties and
access problems as major obstacles in using the computer in the classroom:
classroom implementation appears to be unrelated to any questions of
commitment or pedagogical strategies. It is simply the case that mathematics
departments have low priority in access to computers, and in some cases, had

even been forced by the school organisation to hand over what limited
machines they possessed to other curriculum areas. Of the nine teachers who
reported continued (and extended) use of the computer in their classrooms, six
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would be classified as proactive, and all of them were committed to change at
some level. Moreover, in every case, these teachers were using the major
applications which had formed the backbone of the course (notably Logo and
spreadsheets), whereas some of the other participants reported subsequently
that their main activities were restricted to topic-specific software.

A further critical barrier to continuing computer use was lack of support
from other members of staff, heads of department, and heads of school. There is

a need for a critical mass of teachers committed to using the computer for
mathematical purposes within any one school.

Dissemination. The success of any course dissemination relates to the
personal status of the individual within the department and his/her relationship
with other staff and advisors. Additionally although all the teachers received
formal support from their LEAs, we found. many cases where such support
stopped short of developing the teachers' contribution beyond that of his or her
own classroom. However, our evaluation showed that dissemination was
largely restricted to those who had 'reached' the second phase as referred to
above. In itself, this is an unsurprising finding, in that the motivation for
dissemination among teachers of mathematics Ovou Id be likely to rest on the
computer's role in 'aiding' the process of teaching and learning mathematics.
Even this apparently banal finding is interesting: a significant number of
participants joined the course believing that the computer formed a potential
area of study unrelated to mathematics.

Two years after the completion of the course the picture of dissemination
is reasonably positive. At least four in-service courses, modelled on the
Microworlds Course, are now in progress.
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TEACHERS' PERCEIVED ROLES OF THE COMPUTER

IN MATHEMATICS EDUCATION

Joao Ponte
University of Lisbon

The reform movements concerned with innovative
pedagogical approaches and the possibilities
offered by information technologies rise new
problems to inservice programs. These must give
careful consideration to their pedagogical and
cultural frame and to its inner dynamics. This
study focus in the conceptions and attitudes of
teachers involved in such a program regarding the
educational role of the computer.

Automatic information handling media acquired a prominent
role in many fields of our society. They are essential in
research, design, control, management, and communication. One
finds examples of changes fostered by these technologies in all
domains of economical, social, and cultural life. The
development of the ability to use critically and efficiently
these media is becoming an important educational objective.

The computer is a particularly significant tool in

mathematics, allowing to work simultaneously with different
representations of data and yielding the automatization of the
execution of repetitive tasks. The computer brings with it new
concepts and problems, enabling the extension of the range of
questions and strategies that the students can deal with.

World wide economic competition pressures school systems
for educational reform. Attention is being paid to the
development of student "basic competencies" and professionally
oriented school programs. But there is also a generalized
concern with the present inefficacy of the educational systems
to promote in most students higher literacy competencies (see
Romberg, 1988). Mathematics is one of the subjects that most
contributes to the failure, frustration, and social
unadjustment of many students.

Therefore, it is not surprising that, in mathematics
education, the major strand of the current reforms concerns not
the updating of the content (as was the case in the sixties),
but the establishment of new goals and methodological
approaches. Problem solving, project work, embedding
mathematics in real word contexts, stressing the student' role
in the learning process, interest the possibilities offered by
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the new information technologies have been orientations behind
most recent research and development efforts (APM, 1988; ICMI,
1987; NCTM, 1989).

Research on inservice work with teachers aimed at the
introduction of these innovative ideas in schools is thus
required. But, to be successful, the inservice framework must
be consistent with the sort of pedagogy that is advocated for
schools. The development of new conceptions, attitudes, and
competencies should not be viewed as a mere process of "train-
ing" but as a multifaced process of "teacher development".

The inservice program in which this study is based stands
on the assumption that thinking on how to use the computer in
their classrooms and in other school settings, can be a good
starting point for teachers to reflect in a global manner on
their own practice. Although the computer may be introduced
with little or no change in teachers' conceptions and teaching
methods, their interest in making a sensible use of this
instrument and their disposition to learn new things, assume
new classroom roles, and establish new teacher/student
relationships creates a stimulating environment for general
educational reflection.

This program is carried as part of the National Project
MINERVA, aimed at the introduction of computers in Portuguese
schools. Our group is connected to 27 schools, of which 23 at
middle and secondary level. In these schools it is constituted
an interdisciplinary coordinating team, with 3 to 5 teachers.
Depending on the school, mathematics teachers may or may not
integrate it. This team is encouraged to organize activities to
disseminate the use of new information technologies, to promote
the development of disciplinary and interdisciplinary
activities and projects, and to support other teachers that
intend to use the computer in their classrooms. These
activities are proposed to foster a new structure and
atmosphere influencing the teachers' professional role
(Romberg, 1988).

Different inservice opportunities are offered in this
program, targeted to teachers in a variety of situations. For
example, there are shorter courses focused in a single powerful
piece of software, like LOGO or spreadsheets, intended for
"beginners", and longer ones centered in one school topic, like
mathematics or language, intended for teachers having already
some experience. There are also more extensive courses for
members of the school coordinating teams and the members of the
Project group. Most of these courses have flexible organization
schemes, alternating formal sessions, sometimes in concentrated
periods, with work in the schools. For the teachers, all .the
activities carried within the Project are considered as part of
the inservice program, including the local support directly
given to them, the participation in school projects, and the
meetings with teachers from other schools.

The inservice program was designed with two essential
elements: (a) its cultural and pedagogical frame, based in the
innovative potential of the new information technologies and in
the concept of project work (Monteiro & Ponte, 1987), and (b)
its dynamics, considered at three levels: personal involvement,
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group processes and the role of the program team. This study
focus in the conceptions and attitudes of mathematics teachers,
concerning how they view the computer and its role in
mathematics education.

Theoretical Background

Reforms aimed at the promotion of new pedagogical
approaches or the introduction of new technologies in schools
.are.examples of attempts to educational change. One must be
aware that the most critical aspect for the success of any
intended process of change in large organizations concerns the
role of the people involved (Huberman, 1973; Knupfer, 1989-90).

People can change in various respects. For example, Lewin
(1948) distinguished as possible aspects of personal change:
(a) change in cognitive structure (like learning new
knowledge); (b) change in motivation (such as learning to like
or dislike something); (c) change in ideology or in fundamental
beliefs; and (d) change in behavior (like control of body
muscles).

The cultural and pedagogical frame is an essential aspect
of the inservice program. Teachers have their well established
systems of ideas and beliefs about themselves, about the
subject they teach, about their profession and about their
practice (Jones, 1988). An intended process of change
necessarily carries with it an underlying rationale. The
specification to the teachers of this cultural and pedagogical
rationale is essential to introduce new information and
conceptual elements that challenge the closed circle of their
conceptions and values, their "certainties" (on what works) and
their "impossibilities" (in doing anything different). The
assumption is that it is much more likely to begin a successful
process of questioning these conceptions bringing in new
perspectives from the outside, than searching contradictions
and weaknesses inside the teachers' conceptual frameworks..

Furthermore, this cultural and pedagogical frame ought to
be clearly stated to the teachers if they are to play the role
of subjects in the process. Teachers should have the option of
adhering or not, the possibility of accepting or not the new
views and proposals. The ultimate decision to change is theirs,
and they must be provided with all the relevant information to
make it conscientiously.

In fact, the personal involvement of the teachers is a
fundamental condition of personal change. This involvement
should yield them to levels of progressively more autonomy
regarding the program team (Can rio, 1989).

To foster the involvement of the teachers, the program
must take into account their interests, objectives and
experience. For them, a very important part of the process of
assuming their own process of learning and professional
development depends also on becoming confident in defining and
solving their own problems (Easen, 1985).
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The analysis of needs of the participants has been pointed
as the key element in the design of an innovation. However, the
identification of needs is a complex task. Teacher training
institutions may have more or less defined views about
teachers' training needs, but the teachers themselves may
consider them irrelevant or unacceptable. Regarding teachers as
true professionals is quite contradictory with giving somebody
else the role of stating what they need. But the articulation
by the teachers themselves of their needs may also be very
difficult. They may not be used to this process of self
analysis and may not be aware of what possibilities are
available and what are their implications. This analysis may
only be possible as a result of effective professional
development, and not as the beginning point of the process
(Easen, 1987). In this program, the analysis of needs is
considered as an essential task, but to be carried on an
interactive way by participants and trainers (Can rio, 1989).

The dynamics of group processes is also a fundamental
element of the inservice program. It is quite difficult to
surmount all the difficulties surrounding innovations in
isolation. To resist to constant criticism, to draw in the
experiences of the others, to have reflection partners,
teachers find a strong support from their pears involved in the
same process. Furthermore, group dynamics, appropriately
designed may be an important factor in the change process. As
Lewin (1951) as shown, so far as the values of the group remain
the same, the individual will resist change, and that so much
as he or she will be required to deviate from the norms of the
group. If the norm itself will change, the resistance caused by
the relationship between the individual and the group is
eliminated.

The role of the program team is essential in this process.
It has the responsibility of creating the working framework,
constructing the necessary materials, make the general
proposals, introduce the cultural and pedagogical framework.
The team is seen with an affirmative role of creating the
appropriate environment to foster the program objectives.

Like all adults, teachers try to protect their self-image
as far as possible (Rogers, 1977). Many teachers see programs
offered by training institutions as oriented by systems of
pedagogical beliefs non-congruent with their own. It is not
surprising that they adopt in such cases a defensive attitude.
They do not examine the suggestions and proposals that are
presented with an open mind, but as instances of a foreign and
threatening point of view, that should be distrusted. It is
therefore an important task to establish a climate of
confidence and a good relationship with the teachers. This may
be achieved by working together in an open way, emphasizing
the idea of sharing. The conceptions of the team members are
not to be hidden neither to be imposed upon the teachers.

The interest for the new ideas and approaches develops
naturally in a stimulating environment with its own challenges.
In this respect, the basis for learning is regarded as being
the same for children and adults: strong motivation, great
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amount of activity, reflective looking back and
conceptualization.

Results

For this study, data was collected from questionnaires
specifically distributed to the teachers involved in different
kinds of inservice work. The questionnaires were given at the
beginning and at the end of the first set of formal program
sessions. The responses were analyzed in the light of the
reports and discussions with the team in charge of each course.
(Later in the program, teachers will be interviewed--their
projects and school activities will then be detailed
discussed.)

This study was mostly concerned with the professional
profile of the participants, their reasons for registering in
the course, their intentions regarding the use of computers in
their schools, and their perspectives of the impact of the
computer in mathematics education and in education in general.

Participants. The study included 30 mathematics teachers:
11 were on a course in LOGO.GEOMETRY (a program for problem
solving in Euclidean geometry), 4 on a course on LOGO (which
also included teachers from other subjects and primary school
teachers), and 15 were on a course on using computers in
mathematics education, in which previous experience was
required. The teachers on the two first courses will be called
the "beginner's group" and the teachers in the third course the
"disciplinary group".

All the teachers in the beginner's group work in secondary
schools, with an average teaching experience of 12.7 years. In
this group, 11 teachers were female and 2 were male.

In the disciplinary group, 6 teachers come from secondary
schools and 8 from middle schools. One was a middle school
teacher now teaching at secondary level. She was teaching for
12 years. The years of experience were 12 for the secondary
school teachers and 19.9 for the other middle school teachers.
All of the teachers in this group were females.

Combining both groups, 80% of the teachers have more than
10 years of experience. This shows that it is not the younger
teachers who mostly come to this program.

Reasons for coming to the course. One may get involved in
inservice work of this kind because of a general interest on
what is being proposed regarding the use of computers in
education, or because one wants to have an active role in
his/her school, where computers are already being used. Of
course one may just want to learn more about the actual use of
computers. Teachers could indicate one or more of these reasons
or give any other response.

The intention of making actual use of the computers was
high in both groups (Table 1), with some teachers indicating
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the two reasons. However, this intention can refer to its use
in the classroom, in club activities, in interdisciplinary
projects, in other school activities. The higher rate of
responses for the general interest in the different uses of
computers from the more experienced teachers may indicate that
they do not feel already quite confident in that respect.

Table 1

Reasons for coming into the inservice program

Beginners' Group Disciplinary Group

Immediate intention of
using computers

General interest for the use
of computers in education

10 8

5 10

In the disciplinary group 7 teachers indicate that would
like to know more software and 12 indicate an interest in
analyzing other possible uses of the computer. In this group
several teachers show a clear concern with the classroom, _
others refer to the club, others to both, but none speaks in
terms of general school activities. It becomes quite obvious
that the teachers are essentially concerned with the teaching
of their subject.

Intended activity after the course. What sorts of
activities these teachers intend to do in their schools? After
the first formal part of the program, are they planning
immediate use, or are they still reluctant or undecided?

In the disciplinary group, 14 teachers reported intention
of immediate use. In the beginners' group, 9 indicated
willingness for immediate use and 6 showed some reluctance.
From these, some indicated that they would not have enough
conditions (meaning lack of physical resources--time, space,
equipment), others that they did not had given enough thought
to it, and finally others felt that they would need more
preparation.

The responses also made clear that many middle school
teachers think in terms of club activities--8 refer to it. That
is not the case with secondary school teachers, who mostly are
concerned with classroom activities--only 1 refers to the club
setting.

Perceived educational roles of the computer. It is
important to know what teachers see as the major role of the
computer in education. Is it an instrument for individualized
support to students? An auxiliary means to create new learning
dynamics in the classroom? A resource to the realization of
interdisciplinary activities and projects? Will it be
essentially used in computer related subjects?
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The responses are summarized in Table 2. Again teachers
could give more than one response. We may conclude that the
dominant concern of the teachers in both groups is the creation
of new dynamics in their classrooms.

Table 2

Perceived educational roles of the computer

Beginners' Group Disciplinary Group

Individualized support 1 5

Classroom dynamics 12 15

Resource for projects 6 9

Computer related topics -

A significant number of teachers indicated interdiscipli-
nary activities and projects as an important role, although not
as their first choice. This appears to result from the stress
of that concept in the inservice program, but should be noted
that it is far from being at the center of the teachers'
concerns.

Conclusion

Teachers coming to the program have generally a
considerable teaching experience, most of them maintaining a
stable appointment to their schools. Showing a general interest
for the applications of computers in education, they are
specially concerned with its role in the teaching of their
discipline.

These teachers indicate a major attention to the uses of
the computers in classrooms. Although our project emphasizes
the possible role of alternative working spaces in the schools,
the concept of club as a significant learning environment is
only noted in middle school teachers.

Most teachers come to the inservice program motivated to
learn how to use the computer in their school. They reveal an
intention of immediate use following the fist set of formal
sessions of the program. Some major ideas presented in the
program (such as interdisciplinary projects and school
involvement) appear not to be rejected, but are not present in
their main concerns.
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MATHEMATICS PROCESS AS MATHEMATICS CONTENT: A COURSE FOR TEACHERS.

By Deborah Schiller

Mount Holyoke College

A major obstacle to the transformation of the mathematics classroom into an environment which
produces mathematical understanding is that most teachers have not learned to think mathematically.
This paper describes an experimental mathematics course for inservice teachers in which the notion of
"mathematics content" as the familiar sequence of curricular topics is reconceived as mathematics
process": at once the active construction of some mathematical conceptse.g. fractions, exponents --
and reflection on both cognitive and affective aspects of that activity. The work of the course is
organized around experiences of mathematical exploration, selected readings, and, perhaps most
importantly, journal keeping. Teachers' learnings are illustrated by excerpts from their journals.

Introduction

While responses to the current crisis in mathematics education in the United States have been

varied, one increasingly influential trend proposes that the mathematics classroom be reconceived as a

problem-solving environment. In such a classroom, organized around students working

collaboratively, debating ideas and approaches among themselves, the development of generalized

problem-solving skills would be more highly valued than the memorization of algorithms or their rote

application to particular problems. Correlatively, the role of the teacher would now be to stimulate

students to construct their own understandings of mathematical concepts, to guide them in that

process, and so to help them know their powers as mathematical thinkers.

One considerable obstacle to widespread implementation of such a reconceived mathematics

pedagogy is that most teachers simply do not have an understanding of mathematics sufficient to allow

them to promote exploration and debate in their classrooms. Themselves the products of traditional

mathematics education, these teachersdoubt their own abilities to think mathematically, viewing

mathematics as no more than a collection of facts, definitions, and rule-governed procedures. Now

while it is clear that such teachers need more extensive mathematics training, the sorts of courses

generally offered at colleges and universities, either in mathematics or in education departments, will

not solve this problem. For, while lectures on calculus or mathematics methods may be valuable for

other reasons, they do not focus in the right way on the needs of adults who have had limited

experience in, and a restricted view of, mathematics. Rather, what is needed are mathematics courses

whose primary--and inseparable--goals are to help teachers learn to reason mathematically, to lead

This work was supported in part by the National Science Foundation under grant No. TPE-
8850490. Any opinions, findings, and conclusions expressed are those of the author and do
not necessarily reflect the views of the National Science Foundation.
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them to question and broaden their understanding of what mathematics is, and, by so doing, to

validate them as mathematical thinkers.

In this paper I describe the structure and content of a course guided by these goals. Teachers'

!earnings are illustrated by excerpts from their course journals.

Course Structure

During the spring semester of 1989, the Summer Math for Teachers Program at Mount Holyoke

College offered an experimental course for mathematics teachers. A total of forty-nine teachers were

enrolled in two sections, one mostly of teachers of grades K-4, the other mostly of teachers of grades

5-8, but with a few high school teachers as well. About half the teachers had previously been involved

in the program. Each class met weekly for one 3-hour period.

The course had three major components: mathematical explorations, reading assignments, and

journal-keeping. Each session began by offering teachers the opportunity to bring up any thoughts or

questions about the previous class, the math homework,.or the reading assignments. Discussion

usually lasted half an hour to an hour, leaving the balance of class time for mathematics explorations.

The format for such explorations involved working from an activity sheet in small groups and then

sharing discoveries and questions with the whole class. Homework included further questions related

to the mathematical explorations, a reading assignment of one or two articles, and writing in one's

journal.

Because teachers were concerned about being better prepared to teach their own classes, the

mathematics topics chosen for exploration were usually selected from those in the elementary and

middle school curriculum: whole number operations, integers, fractions, decimals, exponents,

functions, area and perimeter, and properties of geometric figures. Often, however, class discussion

led to such other topics as limits and non-Euclidean geometry. But the choice of particular

mathematics topics was. in the end. of secondary importance. They were the means through which

the orimary goals of the course were pursued,

The reading assignments, distributed thoughout the course on a weekly basis, addressed

constructivist mathematics, mathematical misconceptions, affective aspects of mathematics learning,

metacognitive processes, and instructional approaches to particular topics. The papers were chosen
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to help teachers interpret their own experiences in class and to enable them to translate those

experiences into their own teaching.

Journals were used as a means of reflection as well as a vehicle for dialogue. Teachers wrote

about what they learned and what they found interesting, the ideas and concepts with which they were

currently struggling, events in their own classes, and their personal reactions to course activities. The

instructor collected the journals once a month and responded to them in writing before returning them

one week later.

Developing Mathematical Reasoning Powers

Giving Meaning to SymboK When one works "abstractly," with symbols say, one is likely to

forget--if one ever knew it--that these derive their meaning from conceptual structures ultimately

rooted in--"abstracted from"--experience. For example, the words and symbols that designate division

('-:-,"divided by,"quotient,"remainder) represent conceptual structures ultimately derived from e.g.

the experience of sharing (distributing objects into equal-sized groups and deciding what to do with

what is left over). In traditional mathematics education, however, students from first grade on are

generally taught a variety of formal expressions and operations which are never connected to their

informal mathematical knowledge. As a result, students are often unable to use such expressions or

operations in contexts other than those of the mathematics text book or classrooin.

The teachers in the course were themselves subject to this problem. Adept with the algorithms

for the basic mathematical operations, they needed to attach meaning to already familiar formalisms. To

this end, the first lessons were organized around explorations of the properties of the number system:

teachers were asked to explore the commutativity and non-commutativity of addition, subtraction,

multiplication; and division and they looked for patterns, considered special cases, and illustrated each

discovery with manipulatives, diagrams, or word problems. And where these activities stimulated

. explorations of such topics as negative numbers and the meanings of 'inverse' and 'reciprocal,' major

emphasis was given to the concrete representations of patterns.

Such activities led teachers to a growing awareness of the possibility of attaching meaning to

familiar symbols and operations. As one teacher who was grappling with the shallowness of her own

understanding wrote in her journal:

If I keep playing, the inter-relationships between the operations will become more and
more tangible for me. I can saysubtraction is the reverse of additionbut that's a
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limited way of looking at that operation. Besides, I guess I don't even know what 'is
the reverse or means--AND what the implications may be In various situations.

The lesson sequence continued with similar explorations of the associative and distributive

properties, again emphasizing concrete representations. Having completed a homework assignment

on the distributive properly, teachers reported that it held in the following cases: a. (4+2)x12 and

4x12+2x12; b. (4+2)112 and 4112+2/12; c. 12x(4+2) and 12x4+12x2. But not in d. 121(4+2) and

12/4+12/2. Yet, their feeling about this finding can best be described as mystified. Why should the

pattern hold in cases a-c, but not in d? Teachers were looking at arrays of symbols without attaching

meaning.to them.

As the'class mulled this over, one teacher, thinking about previous lessons, suggested that they

make up word problems for each expression. For c, the class suggested, 'There were 4 boys and 2

girls, and each child had 12 candy bars. How many candy bars were there altogether?" They were

satisfied that both expressions fit the word problem. And for d they suggested: "There were 4 boys

and 2 girls who had 12 candy barslo share among themselves. How many did each child get?" Now

they saw that that fit the first expression. For the second expression they began by analogy, "There

were 12 candy bars to share among 4 boys and another twelve to share among 2 girls...* Suddenly,

there were several gasps and "oh's" in the room. "It's a different sftuationr The concrete context gave

meaning to the symbols, meaning that offered grounding, access, and a sense of ownership over the

ideas. One teacher described her experience: "Seeing the division example as a word problem was

boggling. Suddenly the 'why won't it work' appeared so clear."

aglgitgatialhernalkailheMeamdQuelftai. As teachers attached meaning to familiar

symbols, they came to see mathematics as a web of logical connection. The rules governing the basic

mathematical operations were not arbitrary, need not simply be accepted, but could be demonstrated

through exploring this web. The teachers could make these discoveries themselves, communicate

them, and so corroborate one anther's findings.

Yet, the development of mathematical systems is not, in itself, completely determined by logic. Of

course, the particular designations '7,"+,' or are conventional, and so is the choice of 10 as the base

of our number system, rather than 8 or 12. But while some conventions seem totally arbitrary, others

have powerful systemic ramifications. The instructor frequently looked for opportunities in class

discussion to point out the role of choice, agreement, and theoretical coherence.
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For example, the activity sheets for the exploration of exponents were designed so that as

students worked from the definition of 'whole number exponent,' they derived the product, quotient,

and power rules. Once these rules had been established, students were challenged to give meaning

to such expressions as '20' and '3-2.' From a journal:

The exponent work was Interesting. What's even more fascinating is the notion that
mathematicians have these "agreed on" rules. I've tried to imagine any other discipline
that requires a similar function. The theories of the social sciences are different. One
either accepts a theory, develops it further, or rejects a theory and maybe develops
another.

So 25/25=20=1 because we need to fit the "subtract exponents" rule. But what I
sense is that 20 is a symboland that the agreed on rules are for language's sake. No,
it's more that that. For language's sake, scientists agree on xyz as the name of a newly
discovered element. There's, no need to fit the agreement into an existing schema.

And as this teacher reflected further on the dialectic between logical determination and

convention, she concluded:

So 24 means 2 multiplied by iteslf 4 times, 2x2x2x2. That's agreed on. Therefore, 20
means 2 multiplied by itself 0 times. No No No. This time the zero represents prior
manipulaticins of the exponents. 2x/2x=2x-x So we're changing the meaning of
exponent to make a rule work. But then we say 20 has no meaning anywayso we'll
give it a meaning to fit our rule.

I want to come back to this someday. I think it's very convenient and very logical and
very clever. I need to observe if there is a related process in any other discipline. I

can't think of any right now, but I haven't been thinking along this vein before. Not
ever.

Other mathematical themes and questions that were explored in the course included: the uses

and limits of physical models in the development of mathematical ideas; the need to continually extend

one's understanding of basic operations as one begins to operate with new kinds of numbers--for

example, if one understands multiplication as repeated addition, how does one interpret '-3 x -2' or '1/3

x 1/2?'; and the variety of meanings behind simple formalisms--for example, '15-9=6' might be

interpreted as "take-away," 'comparison," "missing addend," "unknown part,' etc.

Reflecting on One's Own Thinking. If the primary goal of the course was to enable teachers to

become mathematical thinkers, in the instructor's view that would not be so much a matter of providing

opportunities for them to work on particular mathematics topics, as it would be of providing them the

occasion to simultaneously step back from mathematical content in order to reflect on their

mathematical process. (The most important means through which this was to be accomplished was the

journal each participant was required to keep.) As an example of this process, teachers began to see
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that "understanding" wasn't just "on" or 'off," "yes" or "no-, but that there are different levels or stages

of understanding.

There's stiU much more to realize about dividing fractions. I know that I need to work
more to solidify what I have just "discovered" before moving on to the gray areas. I

think this is the big news for me. I don't have to get It all right now. I'm not only learning
math concepts, but I'm becoming more aware of myself as a learner. Was this
planned?

Another teachemoted the relation between acquiring new bits of mathematical understanding

and developing a framework that would give these bits new solidity and significance:

Back to fraction reflectionsI think my thoughts are so sketchy becase the fractional
thinking hasn't settled into any cognitive slots yet. They're still In the making. I know
its not enought to say I have a better "sense" of fractions....A framework is
developing....

But in the process of self-reflection, cognitive and affective issues were registered as inextricably

related to one another. This teacher wrote about the feelings she associated with deepening

understanding:

The idea that new knowledge is often "compartmentalized so that it does not interfere
with existing concepts" (Hiebert and Lefevre, 1986) has been explored in this course.
The excitement and empowerment of making connections with previously learned
material and higher-order concepts unleashes this binding tendency to remain with
surface characteristics of a newly-learned or surtacely-leamed concept.

In this journal excerpt, the excitement and empowerment of new understanding are emphasized, but

when one's investment in that "binding tendency," that 'compartmentalization," to which this teacher

refers, is threatened by change, the experience is often one of anxiety, frustration, or anger. Many

teachers realized for the first time that such -negative" emotions are part of the process and that

avoiding them actually short circuits the learning:

The complexities of math are still baffling to me and I certainly didn't expect to have all
the tangles unraveled in one short course. But I have teamed that little bites of
understanding are possible and, for me, the best way to approach mathematics. I'm
not nearly as frustrated by my lack of conceptual understanding of math's big ideas.

That's not to say I'm not frustrated when a new math topic is presented! Goldin's
(1988) article about affective learning sets really helped me to see my own learning
process. I no longer go directly from frustration to anxiety to fear/depression. I can
stop and pick up some tools I've learned to use in this course.

By articulating their own internal experience as mathematics thinkers, teachers learned that

puzzlement, fuzziness, and frustration--indicators that had previously signalled the end or failure of

learning--are part of the process. They also came to know the satisfaction, excitement, and pleasure

associated with understanding:' j.
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The Nature of Mathematics

The process of becoming a mathematical thinker necessarily involves a changed conception of

the nature of mathematics. The teachers' initial sense of what it meant to do mathematics had been

drawn from their experiences in the traditional mathematics classes they had taken from grade school

on. In general, this involved learning, in Pavlovian fashion, procedures which would, if correctly

followed, lead them to the right answers to examples or problems whose forth one came to recognize:

I was always very successful with math during high school and college--a straight A
student. I am perplexed about how I could have done so well, truly understanding so
little. I realize now that it was possible; I had mastered the mechanics, not the
concepts. And it wasn't like faking it because I didn't realize that anything was missing.

By contrast, this course provided teachers with experiences involving open-ended explorations

designed to develop conceptual understanding. Near the end of the course a journal assignment

asked teachers to write about what they now thought mathematics was.

I see mathematics as a combination of structure and creativity, the number system and
algorithms providing the structure. The creativity comes in reaching beyond the
algorithms to search for the how? and why?

Another teacher wrote:

Mathematics is an infinite structure with countless connections for people to make. It
shouldn't be structured (as it so often is) so that students (and teachers) believe there
is only one way to get to the "right answer." Also, in mathematics and the
development of mathematical concepts, half the excitement, enjoyment, the teaming
is "getting there." The trip of exploring, manipulating, and connecting new and old
ideas is the most important part of math; not the finished puzzle or right answer.

Personal Relationship to Mathematics

As teachers came to recognize their own abilities as mathematical thinkers, and as their views of

the nature of mathematics changed, many of them expressed a new sense of personal power over

mathematical ideas:

I guess even on this simplistic level I find myselfdare I say it?thinking along
mathematical lines. I used to quickly shut down if any notion appeared to be
connected to "complicated" math ideas. I know what it is. Confidence. Some of the
mystery is lifting.

Another teacher wrote of how her increased confidence had freed her to own her mathematical

powers:

Because of the confidence and new perspectives towards problem solving this
course has given me, I was able to follow (albeit gingerly) a line of thought that I never
would have attempted to attend to before--and my reward was a personal immediate
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experience in which I was Conscious of the living power of mathematics thought--not
someone else's account, but minel

Finally in this last excerpt a teacher described how he came to find his own place in the tradition of

mathematical thinkers:

I've come to see mathematics more as a commitment to and respect for knowledge
and understanding. The most memorable moments of the class were those In which
we shared a fascination with mathematical questions, elegant proofs, or paradoxes. At
such times, I felt we shared not only ideas but basic values--a love of Inquiry for its own
sake, an appreciation of human reason, a respect for the intellectual history of
humankind. This Insight ties the study and practice of mathematics in a much more
tangible way than before, to some fundamental moral and ethical drives that I bring
from other areas of my life. It somehow makes me feel that I have the right to
participate in mathematics.

Conclusion

In this paper I have described a mathematics course for teachers whose major goal was to help

participants become mathematical thinkers. The idea for the course actually came from teachers

themselves. For several years, participants in Summer Math for Teachers had been asking for a

mathematics course. They were aware that theirmathematical knowledge was too superficial to allow

them to teach as they now believed they should, but they rejected those courses already offered at

local colleges and universities. "We need a math course taught the way you're teaching us to teach."

And it must be emphasized that this was a mathematics, not a methods, course. But as the goal of

the course was to enable its participants to become mathematical thinkers, the notion of "mathematics

content" was reconceived as at once the active construction of mathematical concepts and reflection

on that activity. The type of thinking that teachers applied to fractions and exponents was qualitatively

different from that required to memorize procedures for, say, finding derivatives or integrals.

Furthermore, as the role of the teacher in the type of mathematics classroom described here is a

considerable departure from the way teachers have been teaching, such courses must attend to

teachers' affective relationships to their subject matter: it is no easier for math teachers than it is for

anyone else to make profound changes in the central activity of their lives.
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PSYCHOLOGICAL/PHILOSOPHICAL ASPECTS OF MATHEMATICAL ACTIVITY:
DOES THEORY INFLUENCE PRACTICE?

Rosalinde Scott-Hodgetts and Stephen Lerman

South Bank Polytechnic. London

At successive meetings of the British Society for Research in Learning Mathematics in 1988/89.
we initiated discussion about the nature of 'radical constructivism' as a theory of knowledge and
its possible implications first for the working mathematician, and then for mathematics
education. We proposed that the radical statement of constructivism does not deny the existence
of the real world, but makes it similar to an undecidable statement. Recognising that attitudes to
the nature of mathematics aped working mathematicians, including teachers, we summarise
the discussion here. quote from some interviews, and propose that this position potentially
empowers one to engage mathematically with the world around.

Introduction

In this paper, we summarise and extend the main points of the discussions held at BSRLM, and

reported briefly in the proceedings (Scott-Hodgetts and Lerman 1989). and we also quote from

some Interviews with mathematicians and mathematics educators, in which they were asked to

talk about their views of mathematical knowledge. and how it affects their work. The

connections between teachers' perceptions of mathematics and their teaching styles has formed

the theme of some of our earlier work [e.g. Scott-Hodgetts 1987, Lerman 1983, Lerman 19861, and

one of us has written and published on constructivism and mathematics also [Lerman 1989).

Our starting point for an examination of the implications of radical constructivism for the

practice of mathematical activity is the, in our view, mistaken interpretation of Kilpatrick

(1987), which was more clearly stated in his presentation than his published paper, that there is

an ontological commitment to the non-existence of the real world implicit in radical

constructivism; he appears to pursue this with the suggestion that since this is patently absurd,

one can dispense with the radical idea completely. However. in our view the strong statement,

namely:

"Coming to know is an adaptive process that organizes one's experiential world; it does not
discover an independent, pre-existing world outside the mind of the knower." [Kilpatrick 19871

precisely and deliberately does not make this commitment. Rather it "places ontological

questions (within the context of human thought) in a similar position to that of undecidable

statements (within the context of mathematical logic)" [Scott-Hodgetts 1988 in Scott-Hodgetts

and Lerman 19891. Consistent with this position is the assertion. "It (radical constructivism)
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intends to be no more and no less than one viable model for thinking about the cognitive

operations and results which, collectively, we call 'knowledge"' Non Clasersfeld 19851.

In our view, Kilpatrick is quite right when he says ".. radical constructivists claim that we need

to abandon our search for objective truth" [Kilpatrick 19871 but where he sees this as

unsatisfactory for us as mathematics educators, we would tend to see this as challenging and

empowering. As Bloor writes "Are believers in a flat earth the only ones amongst us with the

right to operate with the distinction between 'up' and 'down'?" (Bloor 19821.

The Nature of Mathematical Activity

Where practising mathematicians have explicity concerned themselves in an in-depth study of

the nature of mathematical truths, their discussions have often shown an emotional

involvement which might appear surprising if one has the image that philosophical activity, as

well as mathematical activity, is concerned with the gradual discovery or development of

objective truths.

Consider the following extracts from the correspondence between Frege & Hilbert [Frege 19801:

"I call axioms propositions that are true but are not proved because our knowledge of them flows
from a source very different from the logical source, a source which might be called spatial
intuition. From the truth of the axioms it follows that they do not contradict one another. There
is no need for a further proof." [Frege to Hilbert 27.12.18991.

"I found it very interesting to read this very sentence in your letter, for as long as I have been
thinking, writing and lecturing on these things. I have been saying the exact reverse: if the
arbitrarily given axioms do not contradict one another with all their consequences, then they
are true and the things defined by the axioms exist. This is for me the criterion of truth and
existence." [Hilbert to Frege 29.12.18991

These statements are strongly held and defended by the writers, with feelings of frustration, for

instance, being expressed:

'There is widespread confusion with regard to definitions mathematics... it seems to me that
complete anarchy and subjective caprice now prevail." (Frege to Hilbert 27.12.18991.

An image more consistent with the demonstrated emotional commitment is the seeing of a

alternative constructions of the nature of mathematics as the result of different and competing

perspectives upon mathematical activity. The notion that we might regard accounts of the
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nature of mathematical truth in this light is perhaps supported by the analysis of Benacerraf

(1973):

"It is my contention that two quite distinct kinds of concerns have separately motivated
accounts of the nature of mathematical truth: (1) the concern for having a homogeneous
semantical theory in which the semantics for the propositions of mathematics parellel the
semantic for the rest of the language and (2) the concern that the account of mathematical truth
mesh with a reasonable epistemology. It will be my general thesis that almost all accounts of the
concept of mathematical truth can be identified with serving one or another of these masters at
the expense of the other."

In the context of the discussion we wish to evoke, the details of Benacerrafs arguments are not as

important as the justification of his own view that different philosophers have focussed on

different aspects of mathematics, and have built upon that narrower perspective theories which

purport to account for all of mathematics. For example, he points out:

"The difference is that its proponents, although realists in their analysis of mathematical
language, part ways with the platonists by construing the mathematical universe as consisting
exclusively of mathematically unorthodox objects: Mathematics for them is limited to
metamathematics, and that to syntax."

An essential difference between the competing theories refered to by Benacerraf and the radical

constructivist thesis is the explicit assertion within the latter that it makes no claims to be the

"right" position, but merely to be one model for thinking about (mathematical) knowledge, to

stand alongside the alternative positions - for example the formalist one expressed by Hilbert

and the platonist/logicist one purported by Frege. Then, just like mathematical modellers, we

are free to make use of the competing models in whatever ways seem appropriate to our needs. We

would claim that the criteria for choice in both cases are similar - the degree of resonance with

previous experience and the extent to which a particular model seems to 'fit' our current

observations: whilst some aspects of this decision making process might be held to be objective,

it is clear that others are subjective - a point to which we will return later.

Practising Mathematicians

Wittgenstein once said that mathematics was nothing more than the contents of the notebooks

of mathematicians. The relationship between philosophical theory of mathematics and the

actual day-to-'day activity of mathematicians has, however, been largely ignored. In examining

the potential applicability of the radical constructivist model to this area, we felt an essential

starting point was the consideration of what mathematicians "think they are about" when
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engaged in mathematical activity. We therefore decided to compile five case studies of

mathematicians working in a variety of areas: this work is ongoing, but the starting point was

simply to ask them to talk about their views on the nature of mathematics in relation to their

own practice. There is not room here to discuss all of the responses comprehensively, but the

following quotes indicate the variety of focus and belief:

"I see mathematics as a combination of concepts and intuition. The conceptual side is basic to
the extension of mathematics, with intuition central to the development of theorem-proving'

"At the start of a new branch of mathematics there is often an application driving the
development of the mathematics. The symbols and axioms are therefore developed with the
intention that they should provide a model of something in the real world. This modelling
capacity is not a characteristic of the mathematics but is a reflection of the human power to
associate properties of the model with real events."

'The mathematical model used by, statisticians of different schools would be symbolically
identical. But this is superficial since different humans are associating the symbols with
different meanings."

"Because doing mathematics Is a reflex action - almost subconscious you need to be relaxed to do
it well... I don't know why you can Just look at a result and it's obvious how to prove it... it's as if
you Just pull things out of a hat."

"I had a traditional operational research view of mathematics as being, or providing, the
'rationality' of the decision making paradigm . . . more recent paradigms have devalued the use of
mathematics as providing a complete picture of decision making and view its use as describing
and structuring essentially 'messy' problems."

What we are attempting to do now is to look at the appropriateness of analysing the responses we

have within a rational constructivist framework, and we are finding the explanatory powers

very powerful in relation to other theoretical positions. The following extract, taken from the

response of a (former) set theorist forms a good basis for the Illustration of this point:

Mathematics the everyday solving of mathematical problems - seems to me to involve the
creation and manipulation of mathematical objects, and the study and elaboration of their.
sometimes hidden, properties. This seems to involve both the act of creation and that of
revelation, each in a very real sense: there is no feeling of taking part in an elaborate
psychological game: the interest is real and sometimes passionate. There can be a definite "I
want to know the truth of this" feeling.

However. I believe that this feeling of discovery does not bind me to the reality of the
mathematical objects involved: rather, I feel that in the process of mathematical activity, we
postulate the existence (or non-existence) of one or more mathematical objects with a given set of
properties. Having done so. and regardless of the nature of this "constructed" object, the process
of discovery involves the unravelling of hidden structures inherent in the initial definition
(postulation).

Common to these activities are both standard modes of reasoning, which are stable across large
portions of the mathematical community at a given time, and general principles which we
perhaps take to be more fundamental (although all of our mathematical truths are at the same
level of logical truth!), for example certain properties of the natural numbers. Having studied,
and cared about, whether certain generalisations of the Continuum Hypothesis are "true", i.e. are
provable within a particular set theory, I would be happier to abandon my beliefs about such
issues, than to similarly jettison my beliefs regarding such "truths" as " 1 + 1 = 2 " in the domain
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of the natural numbers. The further we get from the objects of immediate perception (I can see
two things, even though "two" may not be such a thing), the easier it becomes to believe that
properties of these mathematical entities may be this or that. Perhaps this merely underlines
my own lack of ability to visualise more complex ideas, and thereby fill them with more
"reality".

When challenged, A admitted that he did indeed have an instinctive belief which could be

expressed in Orwellian terms, i.e. that all mathematical truths are true, but some truths are more

true than others! Refering back to the distinction highlighted by Benacerraf, A's position was

that having a homogeneous semantical theory would be regarded as sufficient to account for

truth across mathematics, including those truths relating to the basic concepts of number

theory, but that what actually happened for him was a switch in focus, from the formal to the

intuitive, when dealing with these latter concepts. In these areas, his view is much more in line

with Frege's first assertion, or perhaps with that of the empiricist, Kitcher, when he says:

"We might consider arithmetic to be true not in virtue of what we can do to the world, but rather
of what the world will let us do to it" [Kitcher, 19841.

In fact. A went on to talk about a qualitative difference for him between concepts which had an

embodiment capable of perception in an instant (i.e. the 'twoness' embodied in two tables), and

those which would need an operation to be performed before they could be verified. This

difference held even when the operation needed was as simple as that of counting.

Clearly A's beliefs as described above do not fall neatly within the established schools of thought

concerning the philosophy of mathematics, and therefore to use one of the standard theoretical

frameworks in order to explain them could not provide an adequate analysis. We could, of

course. just dismiss the subject as being confused in his views, but before doing so we should take

account of two factors:

(1) A sees his current position as.unproblematic, in the sense of being consistent with his

mathematical experiences to date - he does not perceive a need to strive for a 'better'

explanation

(2) A is a successful mathematician - one whose results have been valued by the

mathematical community as evidenced, for example, by the award of a D.Phil. in

Mathematical Logic.
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We would claim that radical constructivism can explain As current viewpoint, and also validate

the 'confusion' which has certainly not impeded, and may well have contributed to. As

mathematical achievements. Nobody would seriously argue that this mathematician has. in any

consistent sense, discovered "an independent, pre-existing world outside the mind of the

knower". Certainly he himself does not claim that, although some mathematical objects or

concepts do seem to him to be "very real" whilst the physical existence of others seems less likely

(even where their 'truth' can be proved mathematically).

What A has been engaged in, without doubt, is what is described as "an adaptive process that

organises one's experiential world". In doing this he has brought to bear different models of the

nature of mathematics, picking and chosing in order best to 'fit' his particular experiences at

different times. The strong radical constructivist statement precisely 'fits' the phenomena which

we observe here: also it 'allows' the ontological commitment which A clearly has in relation to

some mathematical truths whilst at the same time explaining the lack of consistency in this

area. Clearly an implication of adopting the radical constructive stance is that any ontological

commitment must be regarded as an act of faith rather than the result of logical deduction. We

would argue that this certainly provides an adequate explanation of A's position. As we are

speaking from a radical constructivist position (at this point in time) we would not dream of

claiming that it was THE explanation.

Mathematics educators

In a similar series of interviews, mathematics educators including teachers, researchers and

lecturers were asked to talk about their views of mathematics and its relation to their practice.

Again the following quotes illustrate the variety of ideas:

"Mathematical concepts and knowledge have always been there, it may Just have taken a long
time for them to be discovered. So mathematical knowledge is certain. This provides your
security as a teacher. You, the teacher, know the theorems in geometry, for example, and so the
problems arise in putting them across, not in the knowledge itself. Children may develop their
own methods and understanding, but provided they can see that it works for themselves and can
show me they understand, that's OK. I don't expect them to repeat back what I gave to them.

'The thing I really like about investigations, especially ones that I haven't done before actually
even the ones I have done before, because the kids always come up with something new is that
for that period of time, it feels like you are creating mathematics. You may find some new
mathematical description of wallpaper patterns or butterflies wings, and even if someone
somewhere has done something on that, you don't know anything about it, and its new for
everyone".
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"Sure it's a bit disturbing at first doing this kind of work, you always sort of wonder whether
you'll know enough maths to cope with whatever the kids are coming out with, but of course you
do. because you know what to do and that's the most important bit. For instance, if through
looking at a number of cases you generate a formula or something, you know that it has to be
tested, on further specific cases, and then if it's a really sophisticated bit of work, to try and
deduce the result, which was suggested by the data".

"I haven't really thought about what mathematics as such is, I didn't do a full maths degree. I
suppose it has the image of heavy, powerful and in many cases ancient knowledge, but it's
growing and changing all the time, and people are doing that. I mean I don't understand chaos
theory for instance, I saw something about it on television, but whereas you can think that
algebra or geometry is somehow part of the way the world is, no-one can suggest that chaos
theory is, or if you do claim that. it's pretty far-fetched. I should hope that the mathematician
always has the excitement about creating something, rather than discovering something that
has always been there".

The following is an extract from a lengthy interview with C:

"I don't have a clearly worked out philosophy of mathematics educatibn, but as I am attracted by
the aesthetic side of maths rather than the practical, I tend to see it as a game, or as patterns,
games in the sense of creative play. This comes over in my teaching in that I encourage students
to follow their own Interests, not aiming for some right answer, and to see that what they do has
value in Itself. There are rules but you can change them.

I have seen teachers who, as a result of the imposed introduction of group work after being used
to individualised work, don't know how to talk to them, or how to make an input, and indeed
pupils resent their interventions! I agree with the idea that children construct their own
knowledge. although the way we present things affects children and what they make of it. This
attitude is more insecure than the traditional 'This is the right way to do it" but it is more
challenging and Interesting, there's diversity.

When I'm doing maths it's real to me, although it depends what one means by 'real'. Some
children are motivated by aesthetics, some by applications in the real world, and the teacher is
there to make things concrete with real examples. You have to accept where they are at. and find
the common ground."

There are strong elements of formalism here, with an emphasis on the aesthetic and

mathematics as games or patterns. At the same time, the influence of her successful teaching

strategies filters in, through the notion of changing the rules, thus making the play creative;

through seeing challenge in diversity and insecurity, and through focussing on the effects of

presentation by the teacher. Mathematics is real, although for C an aesthetic reality is quite

adequate, whilst recognising that concrete applications provide reality for others.

Here too we would claim that the radical constructivist perspective provides a powerful

explanatory framework of C's views. There is a strong 'fit' between her views and her practices.

The theories that describe and justify her practice becoming absorbed into her Image of the

nature of mathematics. The apparent inconsistencies form a satisfactory and homogeneous

rationale for C's teaching, in which as the mathematician A, above, she has achieved
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considerable 'objective' recognition and success. This rationale 'fits' the strong radical

coristructivist statement, but again, we would not claim that it was THE explanation.

Whether adopting a radical constructive stance would have made Frege and Hilbert at least more

tolerant of each others views is something we certainly can not know. Hopefully those who now

adopt that stance are tolerant.

I guess we would say that if you have an alternative model which fits as well, have faith and use

it tentatively! After all, that's the way you'd use mathematical models, isn't it?
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A WEB OF BELIEFS: LEARNING TO TEACH

IN AN ENVIRONMENT WITH CONFLICTING

MESSAGES'

Robert G. Underhill

Virginia Tech

Abstract

Prospective teachers function In pre-service environments In which there are
frequently several voices representing beliefs about the nature of mathematics and
the nature of learning and teaching mathematics. This paper presents certain
aspects of the first of several environments which are being studied within the
context of a broader project (see footnote). The beliefs which are expressed through
the voice(s) of the schools are of great interest in attempting to sort out the complex
web of Influences during the novice, pre-service period.

Introduction

Images. Images. Images. The construction of mathematical knowledge as a

synthesis task of.the knower was elaborated by Kant (Werkmeister, 1980; Hintikka,

1974), and Dewey (1938) was probably the strongest 20th century proponent of the

social construction of knowledge. It was Piaget (e.g., Flavell, 1903 and Piaget, 1954)

who sought to synthesize these two aspects into a genetic epistemology which

accounted for both the personal and social aspects of knowledge construction. As

these perspectives continue to unfold at the end of the 20th century. we find many

mathematics educators, cognitive psychologists, and anthropologists attempting to

understand the processes of social construction and enculturation into the

mathematical aspects of a given community (e.g.. Bishop. 1985: Carraher and

Schliemann, 1985; Lave, 1985).

The project discussed in this paper is supported by the National Science Foundation under grant No. MDR

8652476.' All opinions expressed ale, of course, solely those of the author. Project Staff: Pls: Hilda Borko,

University of Maryland; Cathy Brown and Bob Underhill, Virginia Tech: Project Direclor: Doug Jones; Graduate

Research Associate: Pat A.gard: Consultant: Margate! Eisenhart.
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More recently, considerable interest has been expressed in the construction of

professional knowledge by teachers as they enter into socialization and change

processes (e.g., Cobb, Yackel, and Wood, 1988; Underhill. 1986) and research,

methodology and examination of research traditions hearing on socialization and

enculturation processes have come to the fore (e.g.. Eisenhart. 1988, and Desforges

and Cockburn, 1987). Considerable research interest has been expressed

concerning teacher's beliefs; see Underhill (1988) for a summary.

This paper is an introductory exploration of a complex set of data. In our

research, we have followed eight senior-level college students through three

seven-week school placements in one small metropolitan school division. We are

documenting the process of learning-to-teach mathematics. In order to study

influences, we have two major data sets which we call the voice of the school and the

voice of the university. By following our student teachers through three-student

teaching placements and then (four of the eight) through their first year of teaching,

we will capture the interactions of school, university and novice teachers over a two

year period. We are developing case studies which reflect a thorough and careful

exploration of similarities and differences across those case studies.

In the following presentation of simulated first-person cases, the beliefs of school

personnel from the central staff, building, and classroom are presented. The

Associate Superintendent has a math background and has been an administrator for

more than 10 of his 30 professional years. The Math Supervisor has taught high

school math for eight years and has been in her present position for five years. The

principal taught grades six and seven for several years. was an assistant principal for

two years and is in his second year of principalship. The classroom teacher has

taught several elementary grades for 24 years arid has been at this school since it

was built in 1970.

Views at the School Division Level

The Associate Superintendent

About Math. I believe that the curriculum is pretty much dictated by state

adopted textbooks, and state literacy passport tests. My own view of mathematics is

captured in non-routine problem solving. generalizability of concepts and structures.

applications and in fostering alternative solution strategies. I want kids to see

algebra as generalized arithmetic and vice versa.

About Teaching and Learning. I believe that leaching should focus on

understanding and that this is best achieved by using manipulntives, focusing on
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applications, and encouraging divergent thinking as in fostering alternative solution

strategies. I value teacher innovation, and we encourage it through mini-grants for

teachers to try things out. We are constantly pushing for math enrichment in

classrooms. I recognize that our Staff Development Office pushes the Madeline

Hunter model pretty hard, but I'm not much of a fan of that approach myself. I want

teachers to get away from the strict use of basals: the supervisor reorders chapters

to fit more closely with my belief that intermittent contact with topics should be in a

matter of days or weeks rather than months.

About the Schools. The division's single greatest resource is its math supervisor.

However, teachers have MUCH flexibility in terms of print material. resources, time

allocated and so on. The central office mainly serves to encourage. support, assist.

It does not require. It hopes, arid it helps.

The Math Supervisor

About Mathematics. My own view of mathematics is captured in interesting

mathematical activities whether they be through emphases on usefulness

(applications), or modeling experiences. or interesting problem-solving experiences.

I believe you can move on to more challenging conceptual ideas even if you haven't

mastered, say, all of the 100 whole number multiplication facts. Mathematics is very

open-ended. My view of mathematics is more fully captured in my views of teaching

and learning.

About Teaching and Learning. I encourage instruction whirh is "highly

manipulative and open ended." I also encourage teachers I() he creative in their

math instruction and to focus on problem solving. I agree with the Associate

Superintendent when he says, there is "no wrong way." teachers should "examine

what's going on in the mind of the child." I think there should be very little emphasis

on rote procedures: teachers should be open and flexible and listen to the children.

There should he lots of peer interaction, verbalization and use of concrete models.

Our teachers have fraction bars, decimal squares. measuring instruments, geometry

models and other aids. At my office, there are "all kinds of materials that can be

checked out: calculators, Miras, pattern blocks and so on." The math teaching is "not

as creative as I'd like to see it," but it's "pretty typical of school systems in general."

nothing outstanding. I think math contests and other competitive activities are useful,

but I also promote the use of cooperative learning as in "groups of four." Students

have many needs, they "should he grouped and regrouped. ...Whole group is not

appropriate 100% of the time."
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About this Particular School. There isn't much grouping and regrouping there in

the regular classes. They use the textbook series' instructional management system

(IMS) some for diagnosis and regrouping, but not nearly as much as some schools

in our division. Most of the teaching in the regular classrooms fellows the curriculum

guide and textbook; it is mostly characterized by routine strategies, and no one there

is particularly interested in manipulatives. They sort of do what's expected. There

is little evidence of using special equipment or resources in the regular program.

The program in that school for the gifted 5th and 6th graders is different in about

every respect from what is going on in the regular classrooms.

Views at the School Level

The Principal

About Math. I believe math is more than rote rules for calculating. I think there

are concepts to be learned. In primary grades these are learned through the use of

manipulatives, but as children get older conceptual learning depends on applications

and integration of content as our school division curriculum guide suggests in

learning decimals and fractions together and in learning area and multiplication

together. Problem solving requiring higher order thinking is also important.

About Teaching and Learning. I encourage teachers to order materials by

placing catalogs in their boxes. but "predominantly I believe most of the teachers are

using the Silver Burdett basal" and its IMS. The teachers deride what other printed

materials and resources they wish to use. Our math priorities are based on the IMS

pre- and post-test results. 1 believe in acceleration for advanced students, but

grade-level teachers decide how to do it. We follow the curriculum guide which

rearranges topics in the basal. Teachers have no flexibility in content, only

sequence. At grade 6 we have 50-60 minutes for math. Usually it's about 30 minutes

of directed teaching and 20 -25 minutes for old and new homework. We follow the

school division's Madeline Hunter effective instruction model. At the 6th grade level,

the main resources are for geometry, especially large chalkboard protractors and

such. All such materials are kept in the classrooms of those who request their

purchase. I would like to see less pupil stress and repetition in math classes and

more practical, real world situations, more use of calculators, more focus on

conceptual and "higher level problem solving. ...We have concentrated too much..

on rote practice."
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About This .School. We are in 3 buildings. One for 5 and 6 one for 2, 3, 4 and one

for gifted, K and the library. Teachers decide how to group learners by grade level,

and I okay their ideas. Grades 4-6 have team teaching. In grade 6, one teacher

teaches both classes of science and one teacher teaches both social studies. I

require teachers to work together. I support alternative approaches by allowing them

to decide their grouping or teaming arrangements.

About This Teacher. He is quite traditional. He puts a problem on the board,

goes over it, and has his students read and work problems. He does use quite a few

visuals and charts and occasionally he uses the overhead projector (OHP). he also

has Cuisenaire Rods and geoboards for his students which he uses occasionally.

Since he likes science, he uses science applications in his math teaching. He gives

lots of individual help and works with small groups when students need remediation.

Views at the Classroom Level

The Teacher

About Math. The math I teach is determined by the State Standards of Learning

and the basal pre- and post-tests; that's mostly skills and concepts. I like geometry,

so I add a special unit to my curriculum. Getting the steps right is really important

in math, and accuracy. For example, it is really important to remember to invert

when dividing fractions and to know how lo count up the number of places to move

the decimal in decimarmultiplication. I like science, so I try to focus on applying

math. In much of math. "This is how it's done!"

About Teaching and Learning. Students need compassionate teachers, and they

need teachers who will help them remember important information (like the

multiplication facts) and mathematical processes. Teachers must help students learn

the steps in mathematical activities like invertingin division and placement of the

decimal in multiplication. Careful and detailed explanations are important. and

students need plenty of practice.

About This School. The principal focuses a Int of attention on basal and

standardized (SRA) test scores. He expects its to raise those scores. The

expectations are very high. There isn't much support for innovation or using

alternative approaches here. There are also no special pieces of equipment or

resources for teaching math. We are expected to team at the 6th grade level. I teach

my own math and both sixth grade science classes. The other teacher teaches both

of the sixth grade social studies classes.
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About My Own Classroom. I have two reading groups and 3 math groups. Three

of the math students are ahead of the rest of the class: they are not gifted, though.

I give them independent work. I have some resources which I share with other

teachers. I use lots of OHP transparencies, and I sometimes use sound filmstrips for

students who are having trouble. I teach about 45-60 minutes each day, and I

basically follow the school division's version of the Madeline Hunter model, using it

to help my students learn hOw to do math. I occasionally use supplementary print

materials, but basically I follow the basal and curriculum guide. I care very much

about the students' self-esteem.

Conclusions

The mathematical conceptions appear to be watered down considerably as one

moves from the highly specialized mathematics leaders at the school division level

to the principal to the classroom teacher. Central level staff seem to have

well-defined conceptions of what they want mathematics teaching and learning to be,

but, at the same time, they seem to have fairly realistic images of its actual classroom

practices. In the research project, we are especially interested in following these

voices through three schools in which the participants have upper-level,

self-contained and departmentalized placements. In studying these over a period of

time, we hope to document the mosaic of influences and the clarity with which these

voices and those of university personnel are articulated (or NOT articulated!) in the

actions and statements of novices.

The presentation will allow for considerable discussion ofthis web of beliefs and

will focus further than this brief paper has been able to do on a second school and

a second placement. Certain tentative implications will be drawn based on work with

two.participants in two placements.
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POSTER TITLE Students' Performances in Clinical Interviews about Fractions

PRESENTER LUCIA ARRUDA DE ALBUQUERQUE TINOCO

INSTITUTION UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - BRASIL

This research was carried out by eight university teachers of

UFRJ and four secondary teachers of the team of Projeto Fundao,

from 1986 to 1988. Its objective was to verif y the efficiency

of a didactic proposal on teaching fractions to students of 5th

grade of the 1
st degree (± 10 years old) and of 1

st grade of 2
nd

degree prospective teachers course (± 16 years old). Some ques

tions have been shown to be important during the analysis of the

written tests, applyed to 131 students, before and after the

teaching using the proposal. To make them more explicit, four

students of 2nd degree were interviewed. These interviews have

shown students' mental processes and difficulties that deserve

special atention. To start the discussion about each one of the

eleven items chosen, which envolve the concept of fractions of

continuous and discrete sets, equivalent fractions, and order

of fractions, the interviewer presented a task to the student.

The most relevant points observed will be presented in the post

er.
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POSTER TITLE: A COGNITIVE APPROACH TO INSTRUCTION FOR PROSPECTIVE

TEACHERS ,

PRESENTER: Nadine Bezuk, Judith Sowder, and Larry Sowder
INSTITUTION: San Diego State University

Cognitive science research on intentional learning and motivated
comprehension was combined with cognitively based research on rational numbers
and probability and statistics in designing a mathematics course for prospective

elementary teachers. Much of the research on rational number learning (c.f., Post,

Harel, Behr, & Lesh, 1988) and probability (c.f., Shaughnessy, in press) has reported
similar conclusions: many students are developing only rote, procedural knowledge

and possess deep-rooted and serious misconceptions. Two sources in particular
offered assistance in formulating instructional guidelines based on cognitive research:

work on intentional learning (Scardamalia, Bereiter, McLean, Swallow, & Woodruff,

1989) and work on motivated comprehension (Hatano & Inagaki, 1987).
The major goal of this course was to lead students to a better understanding of

rational numbers and stochastics, and to examine the limitations of their prior

understandings and make necessary changes. Instructional techniques included
making knowledge-constuction activities overt, maintaining attention to cognitive

goals, using cooperative learning groups, and organizing lessons around problems
selected to induce cognitive incongruity. Alternative types of evaluation were utilized,

including nonroutine tasks and students' written reflections of their learning.
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THE ROLE OF IMAGERY IN MATHEMATICAL REASONING
Dawn Brown and Grayson Wheatley

Florida State University

The relationship between spatial visualization and mathematics competence
has been widely debated. While strong arguments have been put forth for the
critical role of imagery in mathematical reasoning, this view has been
challenged by others. Since meaningful mathematical activity deals with
relationships, it is likely that dynamic imagery plays an important role in
mathematical meaning making. The purpose of this-study was to examine the
role of imagery in mathematical reasoning. Previous research (Brown and
Wheatley, 1989) using clinical interviews, showed that students who had high
scores on a test of mental rotations (Wheatley Spatial Ability Test, 1978) were
making sense of mathematics as evidenced by solutions to nonroutine
mathematics tasks. In contrast, students scoring low on the WSAT had not
constructed meaning for many mathematical relationships even though they
were judged successful in school mathematics.

For the present study, a group administered paper-and-pencil test of
mathematical problem solving and concepts was constructed for grade five
students. The twenty-eight item test included nonroutine problems anci
questions on numeration, measurement, and number operations. This test
along with the WSAT was administered to four classes of grade five pupils in
two public elementary schools. One school (School One) had a high percentage
of minority students and students from low socioeconomic homes while the
other school (School Two) was judged by the state to be exemplary although not
high SES. At School One the correlations between the WSAT and the
mathematics test were relatively high (r = .65 and r = .52) while at School Two
the correlations were markedly lower. Analysis of gender and race data
indicated that nearly half of those scoring high on the WSAT were white males
while half of the students scoring low were black females.

The nature of the relationships between imagery and mathematics
reasoning was probed in individual interviews. Three students from each of
the eight cells (rotation x gender x race) were selected for further-study.
Individual interviews were conducted with these persons to determine the use
of imagery in completing spatial tasks and solving nonroutine problems. All
interviews were video recorded for subsequent analysis. An effort was made to
construct a viable explanation of the children's mathematical reasoning and
use of imagery. These explanations will be presented and related to the test
profiles.
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MATEMATICA V REALIDAD

PROPUESTA DE UNA DIDACTICA INTEORADORA DE LA MATEMATICA
CON EJERCICIOS DE COMPUTACION

YOLANDA CAMPOS CAMPOS
ELOISA BERISTAIN MARQUEZ
CESAR PEREZ CORDOVA

SEP DGENAM - CAM.DF
Mg Grew Hill de Mexico
Libro Electrdnico S.A

RESUMEN

This paper presents the theorical reference on which a proposal of the

learning integration with realia it can be based. We present a scheme of the

didactic strategy, and in one of its phases we foresee the performance of

computing exercises and games. The exemplification of the afore mentioned deals
with "Geometric Transformations, a topic in the seventh unit of the second

grade of the Mexican secundaria goverment syllabus.
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POSTER TITLE: FIAGETIAN AND VAN HIELE THEORIES: THE SEARCH FOR FUNCTORIALITY

PRESENTER: Livia P. Denis, Ph.D.

INSTITUTION: State University of New York at Albany (SUNY-A)

The purpose of this paper is to examine the relationship between stages of cognitive

development (Piaget, Grize & Vinh-Bang, 1977) and the van Hide theory (van Hide,

1957, 1984; van Hiele-Geldof, 1957, 1984) of mathematics learning from a category-

theoretic (Arbib & Manes, 1975; Mac Lane, 1971) perspective. Hoffer (1983) pointed

out the importance of devoting attention to the testing of the van Hide phases of

learning as functors between each van Hie le level category, as well as the need for

testing the existence of the functions in each van Hiele category. This paper moves

in that direction. Neo-Piagetian theories of cognitive development (Raiford, 1989;

Davidson, 1988) were examined to develop a model to explain the relationship

between Piagetian theory of cognitive development and the van Hie les' theory of

mathematics learning. The proposed theoretical model serves two functions. Firstly,

it explains the relationship between the two theories under study. Secondly, it helps

in the clarification of the formulation made that the two theories belong to two
different research programs (Orton, 1987). Students do not in general acquire

formal-operational abilities as early as was originally thought (Farmer et al., 1982;

Flavell, 1977; Shayer & Adey, 1981). Copeland (1984) indicated that logical processes,

such as mathematics, must be based on the psychological structures available to the

child. It is postulated in this paper that the attainment of van Hie le level seems not

only to imply the existence of a knowledge domain and a forgetful functor (Davidson,

1988), but it also suggests the existence of a functor adjoint to the forgetful functor.

Existence of this functor may be evidenced by student's explanations given about

their reasons for actions and solutions to given geometric problems at each van Hide

level (see Fuys, Geddes & Tischler, 1988).
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POSTER TITLE : Tendencies of learning thinking styles and effect of mathematics learning.

PRESENTER : Dr. Hamdy A. El-Faramawy.

INSTITUTION : Dept. of Psychology - Menoufia University, Egypt.

ABSTRACT

The styles of learning *thinking indicate tendency of person to depend on one

hemisphere rather than the other. Therefore, individual tends to use one side of brain,

left / right, or both ( which called integrated style ) in his mental processes and

behaviour. The present study however, aims mainly to answer the two following

questions :

1 - Are there differencies in tendency of learning - thinking styles between maths.

students and history students.

2 Is there any effect of maths. learning on the dominant style among maths. sample.

Samples are chosen from Maths. and history students in college of education -

Egypt.

Learning - thinking styles test of Torrance was used. Results indicate that

* Maths. students are tending more to use right side of brain rather than history.

students.

* There is significant difference of learning thinking styles between first-grade

maths. students and fourth grade maths. Student for the favour of fourth grade sample.

Other findings are implicated.
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SOCIAL CONSTRUCTIVISM AS A PHILOSOPHY OF MATHEMATICS:

RADICAL CONSTRUCTIVISM REHABILITATED?

Paul Ernest

University of Exeter

This paper argues that the traditional absolutist philosophies

of mathematics as a body of certain truth are defunct, and need

to be replaced by a conceptual change view of mathematics

(Confrey, 1981). This recognizes that mathematics is fallible,

like any other field of knowledge, and the creation of human

beings. Such views are increasingly widespread, and are

reflected in the work of Lakatos (1976, 1978), Davis and Hersh

(1980), Kitcher (1983), and Tymoczko (1986).

Social constructivism, a novel approach to the philosophy

of mathematics which fits into this new tradition, is

introduced. It starts from the two principles of radical

constructivism (Glasersfeld, 1989). However, it adds further

assumptions, to avoid the pitfall of solipsism (Goldin, 1989).

These are the assumption of the existence of the physical and

social worlds (without assuming that humans have any certain
knowledge of them). Central to the social world is the

phenomenon of human language. Building on the work of

Wittgenstein (1956) and Bloor (1976) it is argued that just as

language is a social construction, so too is mathematics. The

result is a philosophical analogue of Restivo's (1988)

sociological account of mathematics as a social construction.

Only a brief sketch of social constructivism is provided. (For

a full account, see Ernest, in press, The Philosophy of

Mathematics Education, Palmer). However, if the theory is

accepted tentatively, it is possible to indicate how it

addresses the problem of accounting both for the apparent

objectivity and the utility of mathematics. It also suggests

how some of the criticism directed at radical constructivism

(Goldin, 1989; Kilpatrick, 1987) can be overcome. Finally, the

implications for education are considered briefly.
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Students' Preference for Numbers of. Variables in Translating

POSTER TITLE Algebraic Sentences Involving Two Quantities

PRESENTER Aparna B. Ganguli

INSTITUTION General College, University of Minnesota

Seven hundred sixty three college students enrolled in three levels ( elementary.
intermediate algebra part 1, intermediate algebra part 2) of remedial algebra classes
were given seven sentences to translate algebraically. All the sentences involved
two unknown quantities. The sentences were :
1. The sum of two numbers is 139. The smaller number is x. What is the larger
number ? 2; The sum of two numbers is 35. Write an algebraic expression:
3. One number is three more than another number and their sum is fifty three.
Write an algebraic expression. 4. $4,500 is invested, part at 8% and the rest
at 10% simple interest. If x is the amount of money invested at 8%, what is the
amount of money invested at 10%? 5. One number is four less than the other
number. Find the number in terms of one variable. 6. There are seventy five coins
consisting of nickels and dimes. If the number of nickels is x, find the number of
dimes. 7. The sum of two integers is 11 and their dfference is 35. Write an
equation to describe this and then solve to find both the numbers.

Analysis of the written solutions indicated that many students preferred to use
two variables in algebraic translation when two quantities were involved. Most of the
students attempted to translate the sentences directly. Whenever the wad two
numbers' appeared, students used two symbols. The symbols ranged from different
letters to number signs such as 'sr or simply a blank space such as' -'

Sixteen students, at least five from each level, were interviewed individually and
videotaped. During the 15 to 20 minutes of videotaped interviews, the students were
asked to think aloud while answering questions similar to the written questions.
Transcripts of the videotapes and the students' written responses provided data for
this study. The results indicated that the students experienced considerable difficulty
in translating these simple sentences algebraically. Only 30% ( n= 763) students
wrote 139 x as the correct answer for question number 1. Many chose to write only
y as the final answer.

The major obstacle in students' thought processes was that unless the first
unknown was found in terms of a concrete number, another unknown could not be
expressed in terms of the first unknown. It was relatively easier to name another
symbol for the second unknown and write the equation using two symbols. The
concept of relations between two quantities in terms of one variable seemed to be
extremely abstract for all levels of remedial mathematics students. \

The analysis of the videotaped responses revealed that when two quantities
were involved the more concrete task was to write an equation by using two symbols
rather than writing an algebraic expression. Even the most successful students
followed only the method of syntax and failed to internalize the concept of variables.
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PERCEIVED DIFFICULTY OF PROBABILITY/STATISTICS
CONCEPTS

WILLIAM E. GEESLIN.
UNIVERSITY OF NEW HAMPSHIRE

College students frequently view a probability and statistics course with fear and are
reluctant to enroll in such a course unless it is required. At the same time some
authors have "lowered the level" of their textbooks by deleting various topics from their
text or by labeling certain topics as "optional." The most common deletions have been
from the areas of combinatorics, conditional probability, and probability
models/distributions. At the University of New Hampshire we have two one-semester
introductory probability and statistics courses: one with a calculus prerequisite taken
primarily by mathematics, computer science, and engineering majors; the other
requiring only high school algebra taken primarily by liberal arts and health sciences
majors. While teaching both versions of these courses over a four semester period,
the author has collected concept-ranking data concerning which concepts were
viewed as easiest and which were viewed as most difficult by the students. In addition
students responded in writing to questions concerning how probability and statistics
differed from other mathematics courses. Normal achievement data was collected for
the purposes of assigning course grades as well. Of interest is that non-mathematics
students appeared to do as well on test problems as mathematics/science majors (on
problems that were covered in both courses, i.e., non-calculus questions and
questions that did not involve special distributions such as the Weibull taught only in
the "calculus" section). `Bayes rule when taught using tree diagrams was perceived as
an easy to learn concept (contrary to texts which delete this topic). Combinations and
permutations were viewed as easy to learn concepts by many students. Students felt
that probability was more difficult than statistics, although approximately 20 percent
disagreed with this. In general students did not list many differences between
probability and other mathematics courses that they had taken. Data on relative
perceived difficulty on main concepts will be available.
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Proposal for Poster Session: PME 1990

INTRODUCING TEACHERS TO MISCONCEPTIONS IN
SECONDARY SCHOOL MATHEMATICS

Anna 0. Graeber
University of Maryland

Secondary school mathematics teachers regularly face students with
conceptual and computational misconceptions in mathematics. Yet there are few
readily available resources to help them understand the sources or consequences of
their students' difficulties. This is true despite the fact that during the past decade,
research has begun to produce an impressive data base of common conceptual errors
and intuitive misunderstandings pertinent to topics in secondary school mathematics.

A National Science Foundation funded project is preparing materials for college
and university instructors and their secondary mathematics preservice and inservice
teachers that will give them ready access to these research findings. Materials have
been designed to provide instructional materials and a data bank of selected
references on (1) examples of common misconceptions and the related performance
errors, (2) diagnostic tools and procedures, and (3) instructional methods and
references to resource materials. The materials have been tested in a variety of
settings, including methods courses for preservice teachers in secondary mathematics
as well as graduate level courses for mathematics teachers.

The poster presentation will include a display of selected project products, the
handbook for college instructors, and examples from the bibliograhic data base that is
being compiled using Hypercard software. The project was begun in January 1988
and is funded through December 1990. Thus, a vast majority of the project materials
are well developed at this time.

Among the project products is a set of short articles on misconceptions
["Multiplication makes bigger, division makes smaller; The equality symbol as
operator; Frame of Reference; The probability heuristic of representativeness; Graph
as Picture; The variable reversal error; Systematic Errors: Fractions; Systematic
Errors: Decimals; Misbeliefs about mathematics]. These articles are offered as
examples of misconceptions that could be categorized as overgeneralizations,
overspecializations, mistranslations, and limited conceptions.

Approaches and theories that researchers have offered to help teachers assist
pupils overcome or control the influences of misconceptions are also included in the
materials. An outline of Swan's Conflict teaching approach (Swan, 1986), Driver's
general structure for lesson schemes (Driver, 1987), and Fischbein's (1987) didactical
implications about the role of intuitions are presented and related to Flavell's (1977)
theory of the steps to equilibrium .

The data base currently includes about approximately 900 entries. These can
be accessed by author, mathematical topic that is the subject of the misconception, or
key words in title. Each of the entries is abstracted.
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POSTER TITLE The Conception of Inner Form:Nature and Role in Learning Mathematics

PRESENTER Keiko ITO

INSTITUTION Graduate Student, University of Tsukuba, Japan

"Mathematical form' has sometimes played a fundamental role of extending the

definition of mathematical entity and directing the evolution of mathematics.

For instance, mathematical form that is shown as (a'" ) " = a'"" enable us to

extend the exponents from whole number to fraction and define the power a g/9

Such form is one of the characteristic powers inherent in mathematics.

In teaching and learning mathematics, teachers hope that pupils also develop

their own mathematical knowledge based on form. However, it is considerably

difficult for pupils to do that. Most pupils cannot appreciate both why and how

to define such entity and consequently learn them by rote. Thereafter, they

don't come to be able to make the best use of the definition.

Why are pupils not able to learn mathematics based on form? When considering

its reason, we cannot ignore the sign of their learning mathematics by their

own basis.

Let's see an example. The way of computation of division by fraction is

taught to pupils based on proportion form underlying the computation of division

by whole number. However, when, pupils are asked to compute p ÷ (q/r) ( p,q,r:

whole number )before the instruction, most of them compute it as follows:p ÷

(q/r) = q / (p x r) . One of pupils say, '1 did so because I had learned to

compute (q/r) ± p = q / (r x p) '. His reason indicates that he didn't compute
it at random but invented the computation by his own basis. That is, in the

division of fraction by whole number, whole number needs to be put on
denominator. He extended the definition to the division of whole number by

fraction and defined it.

In this way, pupils learn mathematics on their own way without ignoring
mathematical form completely. The author calls pupils own basis inner form .

Inner means that it is considered in pupils. Inner form is expected to clarify

the relevance of pupils own basis to mathematical form for the purpose of

developing mathematical knowledge in pupil.

In this poster, the author tries to clarify the nature and role of inner

form in learning mathematics. In order to do that, an idea of mathematical

symbol system (J.J.Kaput(1986)) is used. A mathematical symbol system is a

symbol scheme S together with a field fo reference F where a mathematical

structure is associated, and a systematic rule of correspondence c between them.

perhaps, but not necessarily, bidirectional. A symbol system will be denoted by

an ordered triple S= (S. F. c) .

Using this idea, mathematical form is represented on the left side of Fig.l.

While inner form is represented on the right side of Fig.l.
(S . F . c ) (S . F . c )

L

(S . F' . c' ) (S' . F . c' )

(S. . F. . c ) (S. . F' . c* )
Fia.I nachenatical Fore and Inner Fore

In the poster, Fig.l is illustrated concretely with examples of pupil's
performances of operations of fraction and so on.
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Poster Title: Using Metaphors for Reflection in Teacher Education

Presenter: Elizabeth H. Jakubowski

Institution: Florida State University

Personal epistemologies influence teachers' conceptualizations of their

roles and associated beliefs. When teachers teach they do what makes sense
to them in the circumstances. Our research has indicated that the sense making

process is associated with an understanding of the roles which are of greatest

salience to the classroom. Teachers appear to make sense of salient roles in

terms of images and metaphors in which are embedded belief sets and
epistemologies. The image and/or metaphor serves as an organizer of belief

sets. Metaphors and belief sets associated with major roles such as
management, facilitating learning, and assessment influence the way teachers

plan and implement the curriculum.
When teachers adopted the metaphor of teacher as learner, changes in

educational practices were evident. Changes could be observed in their role
conceptualizations, beliefs and then in classroom practices. As teachers

accepted the metaphor and role of teacher as learner, they were able to resolve

the conflict of always having to have the answer or always being the expert in

either mathematics or science. Thus, they were willing to consider and learn

from new ideas which might facilitate children's learning. Associated with the

reconceptualization of roles were different beliefs about learning and teaching.

Decisions were made to change learning environments thus moving their
educational practices from technical interests towards more practical interests.

Adoption of the role of learner/researcher enabled teachers to ask questions
about what was happening in their classes. Consequently, teachers were

interested and alert to finding out what worked and what did not. Teachers

were reminded that they should expect some things not to work on some

occasions for some students. Their role as researchers was to identify what

was happening, work out why, and plan changes to enhance the quality of the

learning environment. The raising of questions brought teachers to a new level

of awareness regarding what their students were doing and the effectiveness of

their strategies. Being a researcher stimulated reflection in and on practice.

Raising questions, seeking answers, reflecting on alternative answers and

making changes resulted in shifts in beliefs about learning and teaching.
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MATHEMATICAL FEATURES OF DYSLEXIA/SPECIFIC LEARNING DIFFICULTY

by

Dr Lynn S Joffe

Joffe Consultancy Services
19 Haynes Close, Slough, Berkshire SL3 8NA United Kingdom

Summary

About 60% of dyslexics have problems with mathematics as well as
language. The most influential factors accounting for their poor
mathematical achievement relate to their lack of "efficiency" in
using central, cognitive processing strategies like verbal
labelling, abstraction, generalisation and short-term memory.
This results in difficulty interpreting mathematical symbols,
understanding the structure of the number system, appreciating
commonalities amongst units of measurement and money and much
more. These students' styles of learning are illustrated and
explanations offered in terms of psychological and educational
models.
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POSTER TITLE IMAGES OF AN ACHIEVABLE TECHNOLOGICAL FUTURE

PRESENTER JAMES J. KAPUT

INSTITUTION SOUTHEASTERN MASSACHUSETTS UNIVERSITY

This "poster" takes the form of a pair of computer-animated videos.
One depicts a variety of mathematics learning software exemplifying
linkable representations and consistent interface across topics and grade
levels. The target grade levels of this software range from 1 - 8.

The second video depicts a dynamic interactive environment for
learning elementary graphical calculus in the context of simulated driving
of vehicles. Here the student can generate graphs of velocity and/or
distance traveled vs time in "real time" while driving the simulated vehicle.

Each of these "draft" videos concentrates on the software itself,
rather than on tasks and contexts for its use. These will be discussed in
accompanying written materials.

Funding for the development of these videos has been provided by the National Center for
Research in Mathematical Sciences Education and Apple Computer, Inc.
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Mathematical Lessons Vla Problem Solving
For Prospective Elementary Teachers'

loanna Masinvila and Van la Santos
Indiana University

Teachers must have the experience of constructing their own mathematical knowledge for the content they will teach.
The construction of their own knowledge can also facilitate the changing of their attitudes and beliefs about
mathematics. The beliefs a future elementary teacher has about what mathematics is and what it means to know and do
mathematics are driving forces in that prospective teacher's learning, applying, and teaching of mathematical ideas (e.g.,

Carpenter, 1989).
At Indiana University a new mathematics content course, using a problem solving and cooperative learning approach,

has been designed to provide prospective elementary teachers the opportunity to develop and construct their own
mathematical knowledge. The philosophy behind this course is to actively involve the students in "doing mathematics"
and thinking throughout this process -- making and testing conjectures, and convincing themselves, their small group and
the whole class. An important aspect of the course is the process in which the students engage while exploring certain
key, unifying mathematical ideas (e.g., place value, decomposition of numbers, equivalence, congruence, similarity,
measurement). This is in agreement with Schroeder and Lester's (1989) ideas that foundational to developing
mathematical understanding is to be able to (a) relate a given mathematical idea to a variety of contexts, (b) relate a
given problem to a greater number of mathematical ideas implicit in it, and (c) construct relationships among the
various mathematical ideas embedded in a problem.

The concept of decomposing numbers is a foundational mathematical idea present in the elementary curriculum. In
order to have future elementary teachers confident and familiar with the relevant aspects involved in this key idea, they
should explore the idea from a variety of perspectives. A traditional approach to number theory concepts would begin
with a lesson which introduces the concept of decomposing numbers into factors by giving definitions and examples of
prime and composite numbers, presenting an algorithmic method of finding the prime factorization of whole numbers,
and assigning practice exercises which focus on computational aspects. Furthermore, in the traditional approach
students usually work, and are assessed, individually and are generally not encouraged to articulate their reasoning and

understanding of the concepts in either verbal or written form.
In contrast, the activity we designed to introduce this concept and lead into a father exploration of number theory,

used cooperative learning and a problem-solving approach, and was part of eight hours of classroom activities on number
theory. Prior to the first activity the students completed, as homework, problems involving key concepts of number
theory. The first activity began with the students making individual concept maps about factors. They were then given
a challenging problem, thc Locker Problem, which had ideas embedded in it of divisibility, factors, primes and
composites, and the categorization of numbers based on their number of factors. Following activities provided
opportunities for the students to explore and deepen their understanding of number theory ideas and, at the same time,
clarify misconceptions that were evident in their pre-activity homework and concept maps. After a period of three
weeks, to allow for maturation and reflection, the students made a second concept map about factors. Then they wrote a
brief reflective paper after examining their Fe- and post-instruction concept maps. The diagnostic homework, concepts
maps, and reflective paper were instrumental in providing us with information about their knowledge, thoughts, and
beliefs before and after the number theory activities. We observed that these enabled the students to: (1) become more
aware of their own knowledge, (2) identify what they still needed to learn, and (3) recognize the difficulties involved in
this topic. This indicated that the prospective teachers were not only using their cognitive knowledge, but were also
starting to develop their metacognitive knowledge.

Some examples of comments from the reflective papers are as follows:
didn't redly think factors were very important because I had always learned about them separately from the rest of

mathematics. Now I see that factors are. vital to many operations and problems. While working with factors, I was also
amazed at the patterns that emerged. For example, I never realized that numbers with three factors are squares ofprime
numbers. I also understand why this is true now."

"My concept map of factors is certainly more complex this time than the first one--and I know its because some of
the things we did with factors in this class, while not necessarily new, related in a different way to what I've done before.
Looking for ways to characterize the number of factors, finding the patterns--those things were new for me."

Additional examples of reflections and concept maps will be presented during the poster session.

'The research reported in this paper was supported by National Science Foundation Grant No. NSF TEI8751478 to the

Indiana University Mathematics Education Development Center. All opinions and conclusions presented are the sole
responsibility of the authors and do not necessarily indicate the views of NSF.

References
Carpenter, T.P. (1989). Teaching as problem solving. In E.A. Silver and R.I. Charles (Eds.) The teaching and

Assessing of mathematical problem solving (pp. 187-202). Reston, Va: National Council of Teachers of
Mathematics (NCTM).

Schroeder, T.L., & Lester, F.K. (1989). Developing understanding in mathematics via problem solving. In P.A.
Trafton and A.P. Shupe (Eds.), New directions for elementary school mathematics (pp. 31.42). Reston, Va: NCTM.

BEST COPY AVAILABLE
229

306



ED<PLCRACIONES SCIBRE EL RAZONAMENTO EN MATEMAT1CAS.
Eduardo Mancera Martinez.

UNAM UPN.

Mexico.
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MATHEMATICAL CONCEPTS AS TOOLS:
Learning about angles in LOGO programming

Luciano L. Meira
University of California, Berkeley

In an investigation of 7th and 10th graders using LOGO graphics, students
manifested significant conceptual problems in choosing inputs for rotational
primitives (Carraher & Meira, 1989). The notion of angle emerged as an essential
"tool" for the adequate use of LOGO rotational primitives. This raises the issue of
two contrasting learning environments: (1) Computational microworlds in which
mathematical concepts function as instruments for reaching one's goals (such as
rotating the turtle in LOGO); and (2) Standard mathematics lessons in which
concepts are viewed as objects of study in themselves. Vergnaud (1984) has
emphasized the need for building a theory of learning in which concepts and
competences are solutions to specific problems that people face. He is
concerned with the task of describing learning environments that support use of
procedures, representations and concepts as solutions to problematic situations.
According to this perspective, LOGO users would come to understand angle as
they work to build their programming projects. The goals of this study were: (1) To
investigate the effect of varying amounts of LOGO programming experience on
the students' previous knowledge of angles; and (2) To explore aspects of the
interaction between LOGO-based learning of angles (a tool for reaching goals)
and school-based learning of angles (an object of study).

The sample consisted of 46 7th grade and 38 10th grade students. The 10th
graders formed the "expert" group, for they had received more school-instruction
on angles than the 7th graders. Subjects in each grade received three levels of
programming training in LOGO: Zero (control group), 15 and 30 hours. The
training procedure was open-ended, based on student-initiated projects.
Students received no direct instruction on angles during the training sessions.
After training was completed, all groups solved a written test about angles with
33 questions involving comparing, estimating and drawing angles, supplements
and congruency. Students were then assigned an "angle knowledge score"
based on Guttman's scale. The group averages were (%): (1) 7th graders (0; 15;
30h)- 38.8; 50.0; 62.6; (2) 10th graders (0; 15; 30h)- 75.0; 68.7; 91.7.

Performance on the test was strongly associated with the amount of training in
LOGO. Both 7th and 10th graders with 30 hours of training scored significantly
better than their classmates with no training at all (p < .03, Mann-Whitney's test).
However, 10th graders from the 15-hour group scored consistently worse than
their classmates with no training in LOGO. The results suggest that: (1) Initially, at
the 15-hour level, experience in LOGO interfered with the 10th graders' existing
standard knowledge of geometry (interference not observed among 7th graders
given their non-expertise in the subject); (2) Then, at the 30-hour level,
experience with LOGO enabled both transcendence of existing interferences
and significant improvement on the angle test, for expert and non-expert groups
when compared with their classmates. The study lends support to Vergnaud's
functionalist perspective of knowledge construction, with the caveat that there
must be significant experience in the domain for the appropriate level of
meaningfulness to emerge. It suggests the value of school teaching in which the
target knowledge appears as the solution, as the tool that students can use to
cope with challenging and meaningful problems.
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CONFLICTS IN COMPUTER PROGRAMMING:
Do empirical contradictions affect problem solving?

'Luciano L. Meira
University of California, Berkeley

Psychology and cognitive science have long argued on the role of empirical
contradictions in promoting cognitive development and learning (Piaget, 1980;
Newell, 1988). In science and mathematics education, the notion of "cognitive
conflict" has given theoretical substance to widespread instructional approaches
oriented to help students overcoming faulty or "misconceived" knowledge
(Novak, Ed., 1987). Computer programming appears to constitute a privileged
context for the study of conflict. A program generated in LOGO graphics, for
example, can be considered an explicit statement of the programmers believes
about how to obtain geometric figures in that environment. If the program does not
succeed, an empirical contradiction should arise that can make the user to
experience conflict. Children's strategies for choosing rotation inputs in LOGO
drawing were described in Carraher & Meira (1989). Three strategies were
identified and a hierarchy suggested in which the strategies were ordered
according mathematical efficiency and sophistication . This study investigated
the role of empirical contradictions in the restructuring of those strategies.

Thirty two children (7th and 10th graders, aged 13 to 16) were interviewed
after 15 or 30 hours of practice in LOGO. The task was to design a program for
generating a cross formed by four equilateral triangles. Subjects worked in
"LOGO editing mode" and had a maximum of five chances to debug and test their
programs. After each debugging trial, the children were asked to justify their
choices of angles in order to obtain a classification of strategies according to the
hierarchy mentioned above. A conflict-event was considered to have occurred
each time the subject tested out a complete program with unsatisfactory results.
The chart shows the percentage of subjects who used the same strategy,
changed to a less efficient strategy, or changed to a more efficient strategy after
each debugging trial.

100
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% of 60
subjects 40

20

0
1 2 3 4 5

Debugging trials

III Same strategy

Less efficient strategies

101 More efficient strategies

Averaging across all trials, 72% of the reactions consisted of using the same
strategy after debugging. Of the subjects who never changed strategy along
trials, 79% used the least efficient strategy in the hierarchy (again averaging
across all trials). The results support the hypothesis that conflict based on
empirical contradictions is not a sufficient condition for progress in problem
solving, even when negation of a clearly stated "theory" is involved (Balacheff,
1986).
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THE SHIFT OF EXPLANATIONS FOR THE VALIDITY OF CONJECTURE:
FROM EXPLANATIONS RELIED ON ACTUAL ACTION TO GENERIC EXAMPLE

Mikio Miyazaki, Graduate School of Education,
University of Tsukuba, lbaraki-Ken 305 JAPAN

In Japan, the guidance of proof geometry begins from 8th grade.
In this guidance, students are intended to understand the sig-
nificance of deductive explanations as assurance of the generali-
ty of properties and relations which plane figures have, together
with cultivating a better understanding for plane figures. But a

research precedent have already showed the following:in Japan,
half of the students, even if they are 9th grade, incline to

regard the explanation by actual measurement and/or manipulation,
besides the explanation by deduction, as explanation enough for
assuring the truth of a statement.

How students can detach their explanation for the validity of
conjecture from actual actions(for example, actual measurement
and/or manipulation) as the method by which they convince the
validity of conjecture?. This problem is a fundamental point of
view for my research. Accordingly, it is indispensable for my
research to set up the level of explanation by actual actions and
that of explanation being apart from them.

Now, my research problem is that how students shift from
explanations relied on actual actions to generic example. Actual
actions necessarily need concrete cases or materials. Then the

iformer explanations is generated with using these cases or mate-
rials. On the contrary, generic example is not apart from actual
actions completely, but is a explanation which never refer only
to the specificity in itself. Rather, students see the generality
of conjecture in generic example. In this sense, generic example
is of great interest for consideration, because it is placed on
the middle between the two levels of explanation. Then consider-
ing the shift from explanations by actual actions to generic
example is the first step for a fundamental point of view for my

. research.
In the experiment, after presenting tasks which require to

make conjectures and the explanation for assuring the validity of
conjectures, students try to make them under a condition that
they must use the concrete case or materials. Due to this condi-
tion, actual actions can appear, and then the process of the
shift from the explanation by actual actions to generic example
can be observed. After this observation, the interview to stu-
dents is carried out for confirming that what is generic example
for him in this process.

This process is analyzed by the following point of view.
1:What the object of validity is ?.
2:What the method for assuring the validity of the object is ?.
3:What explanation is used as generic example ?.

Then I discuss about the shift of explanation in this process on
the basis of the relations between the object and the method of
validity.
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POSTER TITLE

PRESENTER

Calculus as a bridge between intuitions and reality

INSTITUTION

pirardo Npmirnyclry

TERC, Cambridge MA.

This poster session will describe a new project called Measuring and

Modeling. This research project of Technical Education Research Centers (TERC),

will explore ways to help students bridge the gap between formal calculus and

the intuitions about real-life situations that can be modeled with calculus. The

project, funded for 21/2 years by the National Science Foundation, will conduct a

series of teaching experiments to explore learning situations that combine

intuitive physics and mathematical modeling.

In the Measuring and Modeling project high school students will work in

pairs, conducting experiments on real physical processes that they can measure,

modify, and explore in the laboratory. Such events for example, moving

objects, flowing water, or heating substances typify simple systems which

change over time. The students will use probes to measure the physical

quantities generated during the experiment. They will then try to emulate the.

observed behavior creating a mathematical model of the event. To create a

model of the process they have observed, students will use calculus concepts like

rate of change and level of accumulation. The project will study how students

transfer models across various problem types and whether the transfer helps

students to understand the mathematics underlying many different types of

phenomena. Preliminary results will be reported.
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USE OF VAN MIELE PHASES BETWEEN LEVELS
IN PRIMARY SCHOOL GEOMETRY.

Dr Norma C. Presmeg
Faculty of Education
University of Durban-Westville
Private Bag X54001
Durban
4000 South Africa.

Final year students in special method
mathematics courses for the primary
school appear to experience difficulty
in making the links between psycho-
logical theories such as van Hiele's,
and actual practice in their mathematics
classrooms. Analysis of van Hiele's
levels and the phases between them
suggests several practical activities
suitable for primary school pupils
who are growing from the basic level,
recognition of shapes, to the next one,
analysis of properties of these shapes.
Suggestions are also given for activities
facilitating growth to the next level,
ordering of properties.
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POSTER TITLE The relationship between environmental and

cognitive factors and performance in

Mathematics of Indian pupils in the junior

secondary phase

PRESENTER Anirud Rambaran & Tinus van Roov

INSTITUTION University of South Africa

SUMMARY

Both inheritance and environment are important factors in the

development of the child. Whilst innate ability affects

development, the development of that innate ability is also

influenced by environmental factors. Experience facilitates

neural development and neural development facilitates higher

levels of learning. Hence the type of environment the learner

is exposed to has important implications for the learning of

mathematics. This research attempted to investigate the

influence of environment on the cognitive abilities of the

pupils and hence on their performance in mathematics.

236

3-13



Cognitive Strategies and social Classes: a
POSTER TITLE comparative study of working and middle class

english children,
PRESENTER ANTONIO INIA77I

INSTITUTION Universidade Federal de Pernambuco (Mestrado em

Psicologia)

Seventy two English children between 6 and 8 years of
age from different SES groups were tested on a task aimed at
discovering the strategies used for solving a cognitive
problem. The experiment was designed to investigate whether:
(1) the use of different strategies (figurative versus
operational) in solving cognitive problems may depend on
experience and (2) whether these strategies are influenced by
social class.

The task consisted of judging the number of sweets
contained inside a non-transparent box by comparing its
weight with other boxes using a balance-scale. These two
comparison boxes were presented in two different conditions
Visual and Number. In the Visual condition the two compar-ison
boxes were .transparent, and the number of sweets inside was
visible. In the Number condition, the two boxes were not
transparent but the subject could know the quantity of sweets
because the number of sweets in the box was written on the
lid. Half of the visual problems and half of the number
problems had only one solution Task 1 (e.g. target box
contains 5 sweets where comparison boxes contain,
respectively, 4 and 6 sweets), while the other half had two
possible solutions .Task 2 (e.g. target box contains 5

sweets where comparison boxes contain, respectively, 3 and 6
sweets).

The results indicates a superior performance of middle
class children on the Number condition. In the Visual
condition middle class children outperformed working class
children only on Task 1. In Visual Task 2 no significant
differences were found. Taking into account the type of
explanations given. by the subjects the results were
interpreted in terms of cognitive strategies. It is
hypothesised that low SES children make relatively more uses
of figurative strategies, and middle-class children of
operational strategies.
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JUEGOS HATEHATICOS
PROFR. LUDWING J. SALAZAR GUERRERO

PROFR. CORNELIO YAREZ MARQUEZ

INSTITUT() POLITECNICO NACIONAL

CENTRO DE ESTUDIOS TECNOLOGICOS No.1

"WALTER CROSS BUCHANAN

JUEGOS MATEMATICOS, nacio hace aproximadamente 7 allos como

un intento de ayudar a integrar a nuestros alumnos (mayores de

18 allos, con 3 o mAs allos de haber abandonado las aulas,

trabajando actualmente, con familia, etc.) al proceso de

enseNanza-aprendizaje en el Area de matemAticas.

Las prActicas de JUEGOS MATEMATICOS tienen una estructura

tal, que mediante el manejo de materiales concretos y siguiendo

una serie de instrucciones sencillas, los alumnos JUEGAN con

los conceptos matemAticos, los "palpan", los "sienten" y como

consecuencia se observa un buen rendimiento y un mayor interds

por las matemAticas en la mayoria de ellos.

Actualmente contamos con un promedio de 15 prActicas por

curso en el nivel de bachillerato, siendo algunas de ellas

adaptaciones de juegos y entretenimientos conocidos,
permitiendo su adecuacidn y aplicacian en primarias y

secundarias.

En el poster presentation se pretende dar, a conocer

algunas de las prActicas, propiciando que los participantes las

realicen, para posteriormente Ilevar a cabo discusiones
utilizando tecnicas grupales.
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PROSPECTIVE MATHEMATICS TEACHERS' CONCEPTION OF
FUNCTION: THE REPRESENTATIONAL SIDE OF THE COIN

Dina Tirosh Rat! Nachmias
School of Education, Tel Aviv University

Abraham Arcavi
Department of Science Teaching, Weizmann Institute of Science

Abstract
This paper describes a study aimed at providing prospective teachers with an
opportunity to enrich their subject matter and pedagogical knowledge of the concept
of function. First, we describe a learning module which leads to the exploration of the

Parallel Axes Representation (PAR) an unconventional graphical representation of

functions. Then, we describe its implementation in a course for prospective teachers.

Our initial analysis illustrates that working with PAR enriched prospective teachers'
mathematical knowledge and helped them develop a more critical approach towards

the use of representations in instruction.
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Development of some aspects of mathematical thinking in an

Analytic Geometry Course.

Maria Trigueros
ITAM

A course in Analytic Geometry at college Level is being
used to teach some aspects of mathematical thinking:

abstraction, Logical inference and problem solving as part of the

course itself. The course has been taught during three semesters

and the study is still in progress. The analysis of evaluation

questionaires, interviews with the students, a follow up of some
of them in calculus and algebra courses taken simultaneously and

comparison with other groups suggest that the students improve in

the thinking aspects already mentioned although they feel that the

course is difficult and generates anxiety.
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COMPUTER GRAPHICS FOR THE ADQUISITION OF FUNCTION CONCEPTS

Elfriede Wenzelburger G.
Maestria en Educaci6n en
Matematicas, UNAM.

ABSTRACT

It is assumed that the process of reflective abstraction

is the key to the cognitive construction of logico-mathe

matical concepts.

The four types of reflective abstraction necessary to

construct the function concepts -generalization, interior

ization, encapsulation and coordination- can be enhanced

by intuitive meanings of the mathematical ideas. These

intuitive meanings may be developed by an inductive ap-

proach whereby the experimental phase will be done with a

graphics program for microcomputers by means of a graphics

environment which could be described as a "generic organiser"

Results of field experiences show that computer graphics

may indeed be useful for the construction of certain function

concepts.
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